No matching publications found
Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography.
Developmental cell, 2025
doi:10.1016/j.devcel.2024.12.002.
Effects of base temperature, immersion medium, and EM grid material on devitrification thresholds in cryogenic optical super-resolution microscopy.
bioRxiv, 2025
doi:10.1101/2025.03.28.645948.
Structural insights into context-dependent inhibitory mechanisms of chloramphenicol in cells.
Nature structural & molecular biology, 2025
doi:10.1038/s41594-024-01441-0.
Cryo-ET suggests tubulin chaperones form a subset of microtubule lumenal particles with a role in maintaining neuronal microtubules.
Proceedings of the National Academy of Sciences of the United States of America, 2025
doi:10.1073/pnas.2404017121.
An architectural role of specific RNA-RNA interactions in oskar granules.
Nature cell biology, 2024
doi:10.1038/s41556-024-01519-3.
Protocol for subtomogram averaging of helical filaments in cryo-electron tomography.
STAR protocols, 2024
doi:10.1016/j.xpro.2024.103272.
Polysome collapse and RNA condensation fluidize the cytoplasm.
Molecular cell, 2024
doi:10.1016/j.molcel.2024.06.024.
Zooming into lipid droplet biology through the lens of electron microscopy.
FEBS letters, 2024
doi:10.1002/1873-3468.14899.
Bridging structural and cell biology with cryo-electron microscopy.
Nature, 2024
doi:10.1038/s41586-024-07198-2.
Native molecular architectures of centrosomes in C. elegans embryos.
bioRxiv, 2024
doi:10.1101/2024.04.03.587742.
EasyGrid: a versatile platform for automated cryo-EM sample preparation and quality control.
bioRxiv, 2024
doi:10.1101/2024.01.18.576170.
ColabSeg: an interactive tool for editing, processing, and visualizing membrane segmentations from cryo-ET data.
Journal of structural biology, 2024
doi:10.1016/j.jsb.2024.108067.
Transport-limited growth of coccolith crystals.
Advanced materials (Deerfield Beach, Fla.), 2023
doi:10.1002/adma.202309547.
Genetically encoded multimeric tags for subcellular protein localization in cryo-EM.
Nature methods, 2023
doi:10.1038/s41592-023-02053-0.
Molecular mechanism of glutaminase activation through filamentation and the role of filaments in mitophagy protection.
Nature structural & molecular biology, 2023
doi:10.1038/s41594-023-01118-0.
High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering.
Proceedings of the National Academy of Sciences of the United States of America, 2023
doi:10.1073/pnas.2213149120.
Molecular mechanisms of stress-induced reactivation in mumps virus condensates.
Cell, 2023
doi:10.1016/j.cell.2023.03.015.
Light and electron microscopy continuum-resolution imaging of 3D cell cultures.
Developmental cell, 2023
doi:10.1016/j.devcel.2023.03.001.
The distance between the plasma membrane and the actomyosin cortex acts as a nanogate to control cell surface mechanics.
bioRxiv, 2023
doi:10.1101/2023.01.31.526409.
Convolutional networks for supervised mining of molecular patterns within cellular context.
Nature methods, 2023
doi:10.1038/s41592-022-01746-2.
Cryo-electron tomography of reconstituted biomolecular condensates.
Methods in molecular biology (Clifton, N.J.), 2022
doi:10.1007/978-1-0716-2663-4_15.
Genetically encoded multimeric tags for intracellular protein localisation in cryo-EM.
bioRxiv, 2022
doi:10.1101/2022.12.10.519870.
Visualizing translation dynamics at atomic detail inside a bacterial cell.
Nature, 2022
doi:10.1038/s41586-022-05255-2.
Imaging cell biology.
Nature cell biology, 2022
doi:10.1038/s41556-022-00960-6.
Mechanism of RNA polymerase I selection by transcription factor UAF.
Science advances, 2022
doi:10.1126/sciadv.abn5725.
Liquid-to-solid phase transition of oskar ribonucleoprotein granules is essential for their function in Drosophila embryonic development.
Cell, 2022
doi:10.1016/j.cell.2022.02.022.
A modular platform for automated cryo-FIB workflows.
eLife, 2021
doi:10.7554/eLife.70506.
Determinants shaping the nanoscale architecture of the mouse rod outer segment.
eLife, 2021
doi:10.7554/eLife.72817.
Intracellular nanoscale architecture as a master regulator of calcium carbonate crystallization in marine microalgae.
Proceedings of the National Academy of Sciences of the United States of America, 2021
doi:10.1073/pnas.2025670118.
Nuclear pores dilate and constrict in cellulo.
Science (New York, N.Y.), 2021
doi:10.1126/science.abd9776.
High-precision targeting workflow for volume electron microscopy.
The Journal of cell biology, 2021
doi:10.1083/jcb.202104069.
Locating macromolecular assemblies in cells by 2D template matching with cisTEM.
eLife, 2021
doi:10.7554/eLife.68946.
Interphase epichromatin: last refuge for the 30-nm chromatin fiber?
Chromosoma, 2021
doi:10.1007/s00412-021-00759-8.
Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells.
Nature methods, 2021
doi:10.1038/s41592-020-01054-7.
Liquid-to-solid phase transition of oskar RNP granules is essential for their function in the Drosophila germline.
bioRxiv, 2021
doi:10.1101/2021.03.31.437848.
Fluorescence-based 3D targeting of FIB-SEM acquisition of small volumes in large samples.
bioRxiv, 2021
doi:10.1101/2021.01.18.427072.
Protein condensates as aging Maxwell fluids.
Science (New York, N.Y.), 2020
doi:10.1126/science.aaw4951.
Stress fibres are embedded in a contractile cortical network.
Nature materials, 2020
doi:10.1038/s41563-020-00825-z.
Visualizing molecular architectures of cellular condensates: hints of complex coacervation scenarios.
Developmental cell, 2020
doi:10.1016/j.devcel.2020.09.003.
In-cell architecture of the nuclear pore and snapshots of its turnover.
Nature, 2020
doi:10.1038/s41586-020-2670-5.
In-cell architecture of an actively transcribing-translating expressome.
Science (New York, N.Y.), 2020
doi:10.1126/science.abb3758.
Addressing the challenge of in situ structural studies of RNP granules in light of emerging opportunities.
Current opinion in structural biology, 2020
doi:10.1016/j.sbi.2020.06.012.
TEM bright field imaging of thick specimens: nodes in Thon ring patterns.
Ultramicroscopy, 2020
doi:10.1016/j.ultramic.2020.113023.
RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation.
Cell, 2020
doi:10.1016/j.cell.2020.03.049.
Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies.
Nature methods, 2020
doi:10.1038/s41592-019-0630-5.
A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native caenorhabditis elegans tissue.
Nature methods, 2019
doi:10.1038/s41592-019-0497-5.
Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association.
Proceedings of the National Academy of Sciences of the United States of America, 2019
doi:10.1073/pnas.1903642116.
Cryo-EM structure of the native rhodopsin dimer in nanodiscs.
The Journal of biological chemistry, 2019
doi:10.1074/jbc.RA119.010089.
A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate.
Science (New York, N.Y.), 2019
doi:10.1126/science.aav0210.
Unravelling molecular complexity in structural cell biology.
Current opinion in structural biology, 2018
doi:10.1016/j.sbi.2018.08.009.
Phase separation of a yeast prion protein promotes cellular fitness
2018
doi:10.1126/science.aao5654.
The centrosome is a selective phase that nucleates microtubules by concentrating tubulin
2017
doi:10.1016/j.cell.2017.05.028.
Challenges of Integrating Stochastic Dynamics and Cryo-Electron Tomograms in Whole-Cell Simulations.
The journal of physical chemistry. B, 2017
doi:10.1021/acs.jpcb.7b00672.
Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins
Journal of structural biology, 2017
doi:10.1016/j.jsb.2016.07.010.
Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism
Cell, 2016
doi:10.1016/j.cell.2016.08.006.
Visualizing the molecular sociology at the HeLa cell nuclear periphery
Science (New York, N.Y.), 2016
doi:10.1126/science.aad8857.
Site-Specific Cryo-focused Ion Beam Sample Preparation Guided by 3D Correlative Microscopy
Biophysical journal, 2016
doi:10.1016/j.bpj.2015.10.053.
A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms
Journal of structural biology, 2015
doi:10.1016/j.jsb.2015.07.012.
Cryo-focused Ion Beam Sample Preparation for Imaging Vitreous Cells by Cryo-electron Tomography.
Bio-protocol, 2015
doi:10.21769/BioProtoc.1575.
A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation
Cell, 2015
doi:10.1016/j.cell.2015.07.047.
Centrosomes. Regulated assembly of a supramolecular centrosome scaffold in vitro.
Science (New York, N.Y.), 2015
doi:10.1126/science.aaa3923.
Initial stages of calcium uptake and mineral deposition in sea urchin embryos
Proceedings of the National Academy of Sciences of the United States of America, 2014
doi:10.1073/pnas.1312833110.
Cryo-Electron Tomography: The realization of a vision.
Microscopy and Analysis (Americas), 2012
doi:.
Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study.
Journal of structural biology, 2011
doi:10.1016/j.jsb.2011.03.014.
Self-Sharpening Mechanism of the Sea Urchin Tooth
ADVANCED FUNCTIONAL MATERIALS, 2011
doi:10.1002/adfm.201001546.
Crystallization pathways in bone.
Cells, tissues, organs, 2011
doi:10.1159/000324229.
Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays
Proceedings of the National Academy of Sciences of the United States of America, 2010
doi:10.1073/pnas.0914218107.
Overview of the amorphous precursor phase strategy in biomineralization
Frontiers of Materials Science in China, 2009
doi:10.1007/s11706-009-0036-x.
Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase
Proceedings of the National Academy of Sciences of the United States of America, 2008
doi:10.1073/pnas.0803354105.
Asprich mollusk shell protein: in vitro experiments aimed at elucidating function in CaCO3 crystallization
CRYSTENGCOMM, 2007
doi:10.1039/b709749b.