No matching publications found
Dominant variants in major spliceosome U4 and U5 small nuclear RNA genes cause neurodevelopmental disorders through splicing disruption.
Nature genetics, 2025
doi:10.1038/s41588-025-02184-4.
Spliceosome-associated quality control.
Cell research, 2025
doi:10.1038/s41422-025-01118-3.
The green side of splicing: algal spliceosome shows remarkable structural conservation.
The EMBO journal, 2025
doi:10.1038/s44318-025-00403-6.
Structural basis of 5' splice site recognition by the minor spliceosome.
Molecular cell, 2025
doi:10.1016/j.molcel.2024.12.017.
Pathogenic proteotoxicity of cryptic splicing is alleviated by ubiquitination and ER-phagy.
Science (New York, N.Y.), 2024
doi:10.1126/science.adi5295.
Structural basis of the Integrator complex assembly and association with transcription factors.
Molecular cell, 2024
doi:10.1016/j.molcel.2024.05.009.
EasyGrid: a versatile platform for automated cryo-EM sample preparation and quality control.
bioRxiv, 2024
doi:10.1101/2024.01.18.576170.
Structure of the human 20S U5 snRNP.
Nature structural & molecular biology, 2024
doi:10.1038/s41594-024-01250-5.
Monovalent metal ion binding promotes the first transesterification reaction in the spliceosome.
Nature communications, 2023
doi:10.1038/s41467-023-44174-2.
Characterization of the SF3B1-SUGP1 interface reveals how numerous cancer mutations cause mRNA missplicing.
Genes & development, 2023
doi:10.1101/gad.351154.123.
PIM1 controls GBP1 activity to limit self-damage and to guard against pathogen infection.
Science (New York, N.Y.), 2023
doi:10.1126/science.adg2253.
A combinatorial approach to uncover an additional Integrator subunit.
Cell reports, 2023
doi:10.1016/j.celrep.2023.112244.
Structural studies of the spliceosome: bridging the gaps.
Current opinion in structural biology, 2022
doi:10.1016/j.sbi.2022.102461.
What's NEXT for the exosome?
Molecular cell, 2022
doi:10.1016/j.molcel.2022.06.017.
Emerging insights into the function and structure of the Integrator complex.
Transcription, 2022
doi:10.1080/21541264.2022.2047583.
Structural basis of branch site recognition by the human spliceosome.
Science (New York, N.Y.), 2021
doi:10.1126/science.abm4245.
Structural basis for conformational equilibrium of the catalytic spliceosome.
Molecular cell, 2021
doi:10.1016/j.molcel.2021.02.021.
Structure of the catalytic core of the Integrator complex.
Molecular cell, 2021
doi:10.1016/j.molcel.2021.01.005.
Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin-catalysed glutamylation.
Nature, 2019
doi:10.1038/s41586-019-1440-8.
Structural studies of the spliceosome: past, present and future perspectives.
Biochemical Society transactions, 2018
doi:10.1042/BST20170240.
Molecular Mechanism and Evolution of Nuclear Pre-mRNA and Group II Intron Splicing: Insights from Cryo-Electron Microscopy Structures.
Chemical reviews, 2018
doi:10.1021/acs.chemrev.7b00499.
Postcatalytic spliceosome structure reveals mechanism of 3'-splice site selection.
Science (New York, N.Y.), 2017
doi:10.1126/science.aar3729.
Structure of a spliceosome remodelled for exon ligation.
Nature, 2017
doi:10.1038/nature21078.
Cryo-EM structure of the spliceosome immediately after branching.
Nature, 2016
doi:10.1038/nature19316.
Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 A resolution.
Nature, 2016
doi:10.1038/nature16940.
CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast.
Current opinion in structural biology, 2016
doi:10.1016/j.sbi.2015.12.005.
The architecture of the spliceosomal U4/U6.U5 tri-snRNP.
Nature, 2015
doi:10.1038/nature14548.
Structural studies of the spliceosome: zooming into the heart of the machine.
Current opinion in structural biology, 2014
doi:10.1016/j.sbi.2013.12.002.
Structural basis of Brr2-Prp8 interactions and implications for U5 snRNP biogenesis and the spliceosome active site.
Structure (London, England : 1993), 2013
doi:10.1016/j.str.2013.04.017.
Crystal structure of Prp8 reveals active site cavity of the spliceosome.
Nature, 2013
doi:10.1038/nature11843.