No matching publications found
Mouse promoters are characterised by low occupancy and high turnover of RNA polymerase II.
Molecular systems biology, 2025
doi:10.1038/s44320-025-00094-5.
Identification of transcription factor co-binding patterns with non-negative matrix factorization.
Nucleic acids research, 2024
doi:10.1093/nar/gkae743.
Relevance of DNA methylation at enhancers for the acquisition of cell identities.
FEBS letters, 2023
doi:10.1002/1873-3468.14686.
Single-molecule footprinting identifies context-dependent regulation of enhancers by DNA methylation.
Molecular cell, 2023
doi:10.1016/j.molcel.2023.01.017.
DNA sequence and chromatin modifiers cooperate to confer epigenetic bistability at imprinting control regions.
Nature genetics, 2022
doi:10.1038/s41588-022-01210-z.
Cofactors: a new layer of specificity to enhancer regulation.
Trends in biochemical sciences, 2022
doi:10.1016/j.tibs.2022.07.008.
Single molecule multi-omics reveals context-dependent regulation of enhancers by DNA methylation.
bioRxiv.org, 2022
doi:10.1101/2022.05.19.492653.
Genome-wide quantification of transcription factor binding at single-DNA-molecule resolution using methyl-transferase footprinting.
Nature protocols, 2021
doi:10.1038/s41596-021-00630-1.
BANP opens chromatin and activates CpG-island-regulated genes.
Nature, 2021
doi:10.1038/s41586-021-03689-8.
Studying transcription factor function in the genome at molecular resolution.
Trends in genetics : TIG, 2021
doi:10.1016/j.tig.2021.03.008.
Molecular co-occupancy identifies transcription factor binding cooperativity in vivo.
Molecular cell, 2021
doi:10.1016/j.molcel.2020.11.015.
A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity.
Nature communications, 2020
doi:10.1038/s41467-020-16354-x.
McQ – an open-source multiplexed SARS-CoV-2 quantification platform.
medRxiv, 2020
doi:10.1101/2020.12.02.20242628.
Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans.
Nature neuroscience, 2019
doi:10.1038/s41593-019-0431-2.
Cis-regulatory landscapes of four cell types of the retina.
Nucleic acids research, 2017
doi:10.1093/nar/gkx923.
Genome-wide Single-Molecule Footprinting Reveals High RNA Polymerase II Turnover at Paused Promoters.
Molecular cell, 2017
doi:10.1016/j.molcel.2017.06.027.
Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation
Nature, 2015
doi:10.1038/nature14176.
Interpreting and visualizing ChIP-seq data with the seqMINER software.
Methods in molecular biology (Clifton, N.J.), 2014
doi:10.1007/978-1-4939-0512-6_8.
High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions
eLife, 2014
doi:10.7554/eLife.04094.
Tracking the evolution of cancer methylomes
Nature genetics, 2012
doi:10.1038/ng.2451.
SAGA and ATAC Histone Acetyl Transferase Complexes Regulate Distinct Sets of Genes and ATAC Defines a Class of p300-Independent Enhancers
Molecular cell, 2011
doi:10.1016/j.molcel.2011.08.037.
seqMINER: an integrated ChIP-seq data interpretation platform
Nucleic acids research, 2011
doi:10.1093/nar/gkq1287.
Lessons from genome-wide studies: an integrated definition of the coactivator function of histone acetyl transferases
Epigenetics & chromatin, 2010
doi:10.1186/1756-8935-3-18.
Cell-specific occupancy of an extended repertoire of CREM and CREB binding loci in male germ cells
BMC genomics, 2010
doi:10.1186/1471-2164-11-530.
The ATAC acetyl transferase complex controls mitotic progression by targeting non-histone substrates
The EMBO journal, 2010
doi:10.1038/emboj.2010.125.
ATAC and Mediator coactivators form a stable complex and regulate a set of non-coding RNA genes
EMBO reports, 2010
doi:10.1038/embor.2010.75.
The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes
Cellular and molecular life sciences : CMLS, 2010
doi:10.1007/s00018-009-0199-8.
Keys to Open Chromatin for Transcription Activation: FACT and Asf1
Molecular cell, 2009
doi:10.1016/j.molcel.2009.05.004.
GPAT: Retrieval of genomic annotation from large genomic position datasets
BMC bioinformatics, 2008
doi:10.1186/1471-2105-9-533.