Directors' research beta

The Directors' research unit covers thematically distinct research groups, headed by EMBL and EMBO’s leadership.

The Heard group combines genetic engineering and genomics with a range of cell biology and imaging approaches to study the role of chromatin modifications, chromosomal organisation and non-coding RNAs in gene regulation and expression. In particular, the Heard group focusses on understanding the processes of X-chromosome inactivation. This includes the role of Xist RNA and its partners; the cis-acting DNA sequences and trans-acting factors; the mechanisms of gene escape and the functional relevance of escapees; and autosomal monoallelic gene expression in development and disease.

The Hentze group combines biochemical and systems-level approaches to investigate the connections between gene expression, cell metabolism, and their role in human disease. Key goals of the group include collaborative efforts to: uncover the biological roles of unexpected RNA-binding proteins (‘enigmRBPs’) in cell metabolism, differentiation, and development; explore, define, and understand REM networks; help elucidate the role of RNA metabolism in disease, and to develop novel diagnostic and therapeutic strategies based on this knowledge; and to understand the molecular mechanisms and regulatory circuits underlying physiological iron homeostasis.

In investigating the mechanisms and forces that determine cell shape in Drosophila, the Leptin group studies two cell types. They look at how the cells at the tips of the fruit fly’s tracheal system rearrange their components as they grow rapidly and branch out to carry air to the animal’s tissues. And at the tissue level, the group investigates how forces generated by single cells give the embryo’s ventral furrow its final shape. The group also studies medaka and zebrafish to understand how signals from damaged cells are recognised by the innate immune system. They are developing methods to assay immune and stress responses in real time as the fish’s cells encounter pathogens and stress signals.

Groups in this unit

Heard group

Epigenetic mechanisms in development and disease

Hentze group

RNA biology, metabolism and molecular medicine

Leptin group

Cell shape and morphogenesis: subcellular and supracellular mechanisms


Director's research news

Research units at EMBL

Bioinformatics research

Researchers at EMBL-EBI make sense of vast, complex biological datasets produced using new and emerging technologies in molecular biology.

Cell biology and biophysics

Scientists in this unit use multidisciplinary approaches to investigate the molecular and biophysical mechanisms that enable cells to function.

Developmental biology

Scientists in the Developmental biology unit seek to understand the fundamental principles that govern multicellular development.

Genome biology

The Genome biology unit uses and develops cutting-edge methods to study how the information in our genome is regulated, processed, and utilised, and how its alteration leads to disease.

Structural and computational biology

Scientists in this unit use integrated structural and computational techniques to study biology at scales from molecular structures to organismal communities.

Structural biology

At its sites in Hamburg and Grenoble, EMBL provides its researchers and hundreds of external users each year with access to world-leading sources of X-ray and neutron radiation, enabling them to study the structures of biological molecules.

Tissue biology and disease modelling

Scientists at EMBL Barcelona use advanced technologies to observe, manipulate, and model how changes in genes percolate through cells, tissues, and organs, in health and disease.

Research jobs
See more research jobs