A team of international scientists is currently analysing samples from this €10 million public/private scientific expedition (Tara Oceans 2009–2013).
The total of ~35,000 biological samples and ~13,000 contextual measures from three depths constitutes the largest modern-day worldwide collection of plankton sampled 'end to end' around the world.


Last updated:

13 May 2019

88: Y. Li et al****. The earth is small for “leviathans”: long distance dispersal of giant viruses across aquatic environments. Microbes and Environments. (2019).

87: M.E. Sieracki et al. Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems. Scientific Reports. doi:10.1038/s41598-019-42487-1 (2019)

86: A. C. Gregory et al. Marine viral macro- and micro-diversity from pole to pole. Cell doi:10.2139/ssrn.3319797 (2019).

85: L. Caputi et al. Community-Level Responses to Iron Availability in Open Ocean Planktonic Ecosystems. Global Biogeochem. Cycles. 33, 1–29 doi:10.1029/2018GB006022 (2019).

84: E. Faure et al. Mixotrophic protists display contrasted biogeographies in the global ocean. ISME J., 1072–1083 doi:10.1038/s41396-018-0340-5 (2019).

83: M. Arif et al. Discovering millions of plankton genomic markers from the Atlantic Ocean and the Mediterranean Sea. Mol. Ecol. Resour. 19, 526–535 doi:10.1111/1755-0998.12985 (2019).

82: Y. Li et al. Degenerate PCR Primers to Reveal the Diversity of Giant Viruses in Coastal Waters. Viruses. 10, 496 doi:10.3390/v10090496 (2018).

81: F. M. Cornejo-Castillo et al. UCYN-A3, a newly characterized open ocean sublineage of the symbiotic N 2 - fixing cyanobacterium Candidatus Atelocyanobacterium thalassa. Environ. Microbiol., doi:10.1111/1462-2920.14429 (2018).

80: E. Lewitus, L. Bittner, S. Malviya, C. Bowler, H. Morlon. Clade-specific diversification dynamics of marine diatoms since the Jurassic. Nat. Ecol. Evol. 2, 1715–1723 doi:10.1038/s41559-018-0691-3 (2018).

79: F. Benzoni et al. Morphological and genetic divergence between Mediterranean and Caribbean populations of Madracis pharensis (Heller 1868) (Scleractinia, Pocilloporidae): too much for one species? Zootaxa. 4471 doi:10.11646/zootaxa.4471.3.3 (2018).

78: J. Decelle et al. Worldwide occurrence and activity of the reef-building coral symbiont Symbiodinium in the open ocean. Curr. Biol. 28, 3625–3633 doi:10.1016/j.cub.2018.09.024 (2018).

77: D. O. Obura, L. Bigot, F. Benzoni. Coral responses to a repeat bleaching event in Mayotte in 2010. PeerJ. 6, e5305 doi:10.7717/peerj.5305 (2018).

76: Ser-Giacomi, E. et al. Ubiquitous abundance distribution of non-dominant plankton across the world’s ocean. Nat. Ecol. Evol. 2 1243-1249 doi:10.1038/s41559-018-0587-2 (2018).

75: Villar, E. et al. The Ocean Gene Atlas: exploring the biogeography of plankton genes online. Nucleic Acids Res., gky376-gky376, doi:10.1093/nar/gky376 (2018).

74: Kazamia, E. et al. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci. Adv. 4, doi:10.1126/sciadv.aar4536 (2018).

73: Arrigoni, R. et al. Uncovering hidden coral diversity: A new cryptic lobophylliid scleractinian from the Indian Ocean. Cladistics Journal (2018).

72: Mihara, T. et al. Taxon Richness of "Megaviridae" Exceeds those of Bacteria and Archaea in the Ocean. Microbes Environ., doi:10.1264/jsme2.ME17203 (2018).

71: Leblanc, K. et al. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat. Commun. 9, 953, doi:10.1038/s41467-018-03376-9 (2018).

70: Hendry, K. R. et al. Competition between Silicifiers and Non-silicifiers in the Past and Present Ocean and Its Evolutionary Impacts. Frontiers in Marine Science 5, doi:10.3389/fmars.2018.00022 (2018).

69: Grebert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. P. Natl. Acad. Sci. USA 115, E2010-E2019, doi:10.1073/pnas.1717069115 (2018).

68: Flegontova, O. et al. Neobodonids are dominant kinetoplastids in the global ocean. Environmental Microbiology 20, 878-889, doi:10.1111/1462-2920.14034 (2018).

67: Vincent, F. J. et al. The epibiotic life of the cosmopolitan diatom Fragilariopsis doliolus on heterotrophic ciliates in the open ocean. ISME J. 12, 1094-1108, doi:10.1038/s41396-017-0029-1 (2018).

66: Yoshida, T. et al. Locality and diel cycling of viral production revealed by a 24 h time course cross-omics analysis in a coastal region of Japan. ISME J. 12, 1287-1295, doi:10.1038/s41396-018-0052-x (2018).

65: Treguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27-37, doi:10.1038/s41561-017-0028-x (2018).

64: is assigned to #67.

63: Seeleuthner, Y. et al. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nature Communications 9, doi:10.1038/s41467-017-02235-3 (2017).

62: Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nature Communications 9, doi:10.1038/s41467-017-02342-1 (2017).

61: Morard, R. et al. Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages. Sci. Rep-Uk 8, doi:10.1038/s41598-018-20833-z (2017).

60: Colin, S. et al. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. Elife 6, doi:10.7554/eLife.26066 (2017).

59: Kiko, R. et al. Biological and physical influences on marine snowfall at the equator. Nat. Geosci. 10, 852-+, doi:10.1038/Ngeo3042 (2017).

N.A. Matsuoka, A. et al. Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data. Remote Sensing of Environment 200, 89-101, doi:10.1016/j.rse.2017.08.009 (2017).

58:  López-Escardó, D. et al. Evaluation of single-cell genomics to address evolutionary questions using three SAGs of the choanoflagellate Monosiga brevicollis. Sci. Rep-Uk 7, 11025, doi:10.1038/s41598-017-11466-9 (2017).

57:  Royo-Llonch, M. et al. Exploring Microdiversity in Novel Kordia sp (Bacteroidetes) with Proteorhodopsin from the Tropical Indian Ocean via Single Amplified Genomes. Front. Microbiol. 8, doi:10.3389/fmicb.2017.01317 (2017).

56:  Madoui, M. A. et al. New insights into global biogeography, population structure and natural selection from the genome of the epipelagic copepod Oithona. Mol. Ecol. 26, 4467-4482, doi:10.1111/mec.14214 (2017).

55:  Benoiston, A. S. et al. The evolution of diatoms and their biogeochemical functions. Philos. T. R. Soc. B. 372, doi:10.1098/rstb.2016.0397 (2017).

54:  Fridman, S. et al. A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nature Microbiology, doi:10.1038/s41564-017-0002-9 (2017).

53:  Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Scientific data 4, doi:10.1038/sdata.2017.93 (2017).

52:  Cozar, A. et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Sci. Adv. 3, doi:10.1126/sciadv.1600582 (2017).

51:  Nishimura, Y. et al. Environmental Viral Genomes Shed New Light on Virus-Host Interactions in the Ocean. Msphere 2, doi:10.1128/mSphere.00359-16 (2017)

50:  Biard, T. et al. Biogeography and diversity of Collodaria (Radiolaria) in the global ocean. ISME J. 11, 1331-1344, doi:10.1038/ismej.2017.12 (2017).

49: Arrigoni, R. et al. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications. Molecular Ecology Resources, n/a-n/a, doi:10.1111/1755-0998.12640 (2017).

48:  Vannier, T. et al. Survey of the green picoalga Bathycoccus genomes in the global ocean. Sci. Rep-Uk 6, doi:10.1038/srep37900 (2016).

47:  Flegontova, O. et al. Extreme Diversity of Diplonemid Eukaryotes in the Ocean. Curr. Biol. 26, 3060-3065, doi:10.1016/j.cub.2016.09.031 (2016).

46:  Boccara, M. et al. Full-field interferometry for counting and differentiating aquatic biotic nanoparticles: from laboratory to Tara Oceans. Biomed. Opt. Express 7, 3736-3746, doi:10.1364/BOE.7.003736 (2016).

45:  Arrigoni, R. et al. Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species. Molecular Phylogenetics and Evolution 105, 146-159, doi:10.1016/j.ympev.2016.08.023 (2016).

44: Arrigoni, R et al. When forms meet genes: revision of the scleractinian genera Micromussa and Homophyllia (Lobophylliidae) with a description of two new species and one new genus. Contributions to Zoology 85: 387-422 (2016).

43:  Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature, doi:10.1038/nature19366 (2016).

42: Terraneo, T. I. et al. Species delimitation in the coral genus Goniopora (Scleractinia, Poritidae) from the Saudi Arabian Red Sea. Molecular Phylogenetics and Evolution 102, 278-294, doi:10.1016/j.ympev.2016.06.003 (2016).

41:  Farrant, G. K. et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proceedings of the National Academy of Sciences 113, E3365-E3374, doi:10.1073/pnas.1524865113 (2016).

40:  Cornejo D'Ottone, M. et al. Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. Biogeosciences 13, 2971-2979, doi:10.5194/bg-13-2971-2016 (2016).

39:  Yelton, A. P. et al. Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME J., doi:10.1038/ismej.2016.64 (2016).

38:  Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504-507, doi:10.1038/nature17652 (2016).

37:  Cornejo-Castillo, F. M. et al. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nat. Commun. 7, 11071, doi:10.1038/ncomms11071 (2016).

36:  Malviya, S. et al. Insights into global diatom distribution and diversity in the world's ocean. PNAS 113, doi:10.1073/pnas.1509523113 (2016).

35:  Brum, J. R. et al. Illuminating structural proteins in viral "dark matter" with metaproteomics. PNAS 113, 2436-2441, doi:10.1073/pnas.1525139113 (2016).

34:  Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465-470, doi:10.1038/nature16942 (2016).

33:  Mordret, S. et al. The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.). ISME J., doi:10.1038/ismej.2015.211 (2015).

32:  Clerissi, C. et al. Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes. Environ. Microbiol. Rep. 7, 979-989, doi:10.1111/1758-2229.12345 (2015).

31:  Lescot, M. et al. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages. ISME J. 10, 1134-1146, doi:10.1038/ismej.2015.192 (2016).

30:  Roitman, S. et al. Closing the gaps on the viral photosystem-I psaDCAB gene organization. Environ. Microbiol. 17, 5100-5108, doi:10.1111/1462-2920.13036 (2015).

29:  Le Bescot, N. et al. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environmental Microbiology 18, 609-626, doi:10.1111/1462-2920.13039 (2016).

28:  Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Global Biogeochemical Cycles 29, 1044-1059, doi:10.1002/2014gb005063 (2015).

27:  Brewin, R. J. W. et al. Regional ocean-colour chlorophyll algorithms for the Red Sea. Remote Sensing of Environment 165, 64-85, doi:10.1016/j.rse.2015.04.024 (2015).

26:  Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Scientific Data 2, 150023, doi:10.1038/sdata.2015.23 (2015).

25:  Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, doi:10.1126/Science.1262073 (2015).

24:  de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, doi:10.1126/Science.1261605 (2015).

23:  Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, doi:10.1126/Science.1261498 (2015).

22:  Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, doi:10.1126/Science.1261359 (2015).

21:  Villar, E. et al. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 348, doi:10.1126/Science.1261447 (2015).

20:  Romagnan, J. B. et al. Comprehensive model of annual plankton succession based on the whole-plankton time series approach. PLOS One 10, doi:10.1371/journal.pone.0119219 (2015).

xx:  Roullier, F. et al. Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone. Biogeosciences 11, 4541-4557, doi:10.5194/bg-11-4541-2014 (2014).

19:  Gasmi, S. et al. Evolutionary history of Chaetognatha inferred from molecular and morphological data: a case study for body plan simplification. Frontiers in Zoology 11, 84, doi:10.1186/s12983-014-0084-7 (2014).

18:  Arrigoni R., R. Z. T., Chen C.A., Baird A.H. Benzoni F. Taxonomy and phylogenetic relationships of the coral genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae). Contributions to Zoology (2014).

17:  Arrigoni, R. et al. A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. Zoologica Scripta, 661-688, doi:10.1111/zsc.12072 (2014).

16:  Acinas, S. G. et al. Validation of a new catalysed reporter deposition-fluorescence in situ hybridization probe for the accurate quantification of marine Bacteroidetes populations. Environ. Microbiol., doi:10.1111/1462-2920.12517 (2014).

15:  Brady R. Cunningham, Jennifer R. Brum, Sarah M. Schwenck, Matthew B. Sullivan & John, S. G. An inexpensive, accurate and precise wet-mount method for enumerating aquatic viruses. Applied and Environmental Microbiology 80, 2995-3000, doi: 10.1128/AEM.03642-14 (2014).

14:  Benzoni, F., Arrigoni, R., Waheed, Z., Stefani, F. & Hoeksema, B. Phylogenetic relationships and revision of the genus Blastomussa(Cnidaria: Anthozoa: Scleractinia) with description of a new species. RAFFLES BULLETIN OF ZOOLOGY 62, 358–378 (2014).

13:  Clerissi, C. et al. Unveiling of the Diversity of Prasinoviruses (Phycodnaviridae) in Marine Samples by Using High-Throughput Sequencing Analyses of PCR-Amplified DNA Polymerase and Major Capsid Protein Genes. Applied and Environmental Microbiology 80, 3150-3160, doi:10.1128/Aem.00123-14 (2014).

12:  Chase, A. et al. Decomposition of in situ particulate absorption spectra. Methods in Oceanography 7, 110-124, doi:10.1016/j.mio.2014.02.002 (2013).

11:  Boss, E. et al. The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; Contribution of the Tara Oceans expedition. Methods in Oceanography 7, 52-62, doi:10.1016/j.mio.2013.11.002 (2013).

10:  Abida, H. et al. Bioprospecting Marine Plankton. Marine Drugs 11, 4594-4611, doi:10.3390/Md11114594 (2013).

9:   Werdell, P. J., Proctor, C. W., Boss, E., Leeuw, T. & Ouhssain, M. Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation. Methods in Oceanography 7, 40-51, doi:10.1016/j.mio.2013.09.001 (2013).

8:   Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environmental Microbiology, 2659-2671, doi:10.1111/1462-2920.12250 (2013).

7:   Benzoni, F. Echinophyllia tarae sp n. (Cnidaria, Anthozoa, Scleractinia), a new reef coral species from the Gambier Islands, French Polynesia. Zookeys, 59-79, doi:10.3897/zookeys.318.5351 (2013).

6:   Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. PNAS 110, 11463-11468, doi:10.1073/pnas.1304246110 (2013).

5:   Solonenko, S. A. et al. Sequencing platform and library preparation choices impact viral metagenomes. BMC Genomics 14, doi:10.1186/1471-2164-14-320 (2013).

4:   Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME Journal 7, 1738-1751, doi:10.1038/ismej.2013.67 (2013).

3:   Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME Journal 7, 1678-1695, doi:10.1038/ismej.2013.59 (2013).

2:   Corse, E. et al. Phylogenetic Analysis of Thecosomata Blainville, 1824 (Holoplanktonic Opisthobranchia) Using Morphological and Molecular Data. PLOS One 8, doi:10.1371/journal.pone.0059439 (2013).

1:   Karsenti, E. et al. A Holistic Approach to Marine Eco-Systems Biology. PLOS Biology 9, doi:10.1371/journal.pbio.1001177 (2011).

EMBL and the Tara Ocean Foundation

Life began in the ocean. It tells the story of how the most complex organisms evolved from primordial bacteria and it will tell us about the fate of the myriad organisms present today.