Tryptophan fluorescence (WF) for total protein and peptide determination

Proteomics Core Facility Tel +49 6221 387-8388 pcf@embl.de

Principle

The fluorescence spectrometry of tryptophan offers a simple, sensitive, and direct method for protein and peptide assays (Wiśniewski & Gaugaz, 2015). The WF assay is fully compatible with SDS and other solutes that are commonly used for the lysis of tissue and cells. The assay can be carried out on a standard fluorescence spectrometer with cuvettes and in a 96-well format using a plate reader. The method is particularly suitable for determination of peptide content in diluted samples.

EMBL Heidelberg Meyerhofstrasse 1 69117 Heidelberg Germany

www.embl.org

https://www.embl.de/proteomics/proteomics_services/index.html

Material

Reagents/Material	Details			
8 M Urea in 10 mM	Prepare 48g of urea in 100 mL 10mM HEPES, pH 8.5 (NaOH)			
HEPES pH 8.5	Note: Don't need to make it fresh			
Albumin Standard	Pierce™ Dilution-Free™ BSA Protein Standards, multichannel			
(Pierce, A56979)	pipette compatible.			
	Ready to pipet, BSA: 0.125, 0.25, 0.5, 1, 2, 5, 10 mg/mL			
96-well plate	For example:			
(Black, flat-bottomed, polystyrene plates)	Corning CLS3915			
	Or similar plates			
	Note: You can reuse the plates after washing them.			

Sample Dilution

Sample	Dilution for assay
Total lysate or	Dilute your sample in the assay buffer to end up in concentration
peptide	range 0.125-10 mg/mL of the standard

Microplate Procedure

- 1. Pipette 10 µL of each standard or your sample replicate into a **black** microplate well
 - a. Tip: Pipet your standard in the 1st, 2nd and 3rd column, then your samples rather than in rows because the standard has 8 concentrations (including 0 mg/mL)
- 2. Add 200 μ L of the urea assay buffer to each well and mix the plate thoroughly on a plate shaker for 30 seconds.
- 3. Measure the fluorescence on a compatible instrument *Note: the signal is stable over hours*

Settings

Important: Excitation at 295 nm and emission recorded between 320-400 nm and measurement at 20 °C

Here for example for a Tecan reader:

Mode	Fluorescence	Тор	
	Reading		
Excitation		295	nm
Wavelength			
Emission Wavelength		355	nm
Excitation Bandwidth		5	nm
Emission Bandwidth		20	nm
Gain		100	Manual
Number of Flashes		100	
Flash Frequency		400	Hz
Integration Time		50	μs
Lag Time		0	μs
Settle Time		0	Ms
Z-Position (Manual)		20000	μm

Reference

• Wiśniewski JR, Gaugaz FZ. Fast and sensitive total protein and peptide assays for proteomic analysis. Analytical chemistry. 2015 Apr 21;87(8):4110-6.

PMID: **25837572**. DOI: <u>10.1021/ac504689z</u>