Self-organization of vascularized skeletal muscle from bovine embryonic stem cells.

Sanaki-Matsumiya M, Villava C, Rappez L, Haase K, Wu J, Ebisuya M

bioRxiv, 2024

doi:10.1101/2024.03.22.586252.

The stem cell zoo for comparative studies of developmental tempo.

Lázaro J, Sochacki J, Ebisuya M

Current opinion in genetics & development, 2024

doi:10.1016/j.gde.2023.102149.

A stem cell zoo uncovers intracellular scaling of developmental tempo across mammals.

Lázaro J, Costanzo M, Sanaki-Matsumiya M, Girardot C, Hayashi M, Hayashi K, Diecke S, Hildebrandt TB, Lazzari G, Wu J, Petkov S, Behr R, Trivedi V, Matsuda M, Ebisuya M

Cell Stem Cell, 2023

doi:10.1016/j.stem.2023.05.014.

Scaling up complexity in synthetic developmental biology.

Martínez-Ara G, Stapornwongkul KS, Ebisuya M

Science (New York, N.Y.), 2022

doi:10.1126/science.add9666.

Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues.

Martínez-Ara G, Taberner N, Takayama M, Sandaltzopoulou E, Villava CE, Bosch-Padrós M, Takata N, Trepat X, Eiraku M, Ebisuya M

Nature communications, 2022

doi:10.1038/s41467-022-33115-0.

Arrested coalescence of multicellular aggregates.

Oriola D, Marin-Riera M, Anlaş K, Gritti N, Sanaki-Matsumiya M, Aalderink G, Ebisuya M, Sharpe J, Trivedi V

Soft matter, 2022

doi:10.1039/d2sm00063f.

Periodic formation of epithelial somites from human pluripotent stem cells.

Sanaki-Matsumiya M, Matsuda M, Gritti N, Nakaki F, Sharpe J, Trivedi V, Ebisuya M

Nature communications, 2022

doi:10.1038/s41467-022-29967-1.

Tension hones body segmentation around the clock.

Ebisuya M, Trepat X

Nature, 2022

doi:10.1038/d41586-022-00840-x.

20 years of Developmental Cell: looking forward.

Hiiragi T, Gladfelter AS, Miguel-Aliaga I, Coller HA, Lau OS, McBride HM, Aoki K, Linkermann A, Santaguida S, Wasteneys G, Rivron NC, Shahbazi MN, Ebisuya M, Lancaster MA

Developmental cell, 2021

doi:10.1016/j.devcel.2021.11.017.

Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues.

Martínez-Ara G, Taberner N, Takayama M, Sandaltzopoulou E, Villava C, Takata N, Eiraku M, Ebisuya M

bioRxiv, 2021

doi:10.1101/2021.04.20.440475.

Species-specific segmentation clock periods are due to differential biochemical reaction speeds.

Matsuda M, Hayashi H, Garcia-Ojalvo J, Yoshioka-Kobayashi K, Kageyama R, Yamanaka Y, Ikeya M, Toguchida J, Alev C, Ebisuya M

Science (New York, N.Y.), 2020

doi:10.1126/science.aba7668.

Vacuum microcasting of 2-methacryloyloxyethyl phosphorylcholine polymer for stable cell patterning.

Tanaka N, Sekine R, Funano SI, Sato A, Carretero NT, Ebisuya M, Tanaka Y

BioTechniques, 2020

doi:10.2144/btn-2020-0052.

Recapitulating the human segmentation clock with pluripotent stem cells.

Matsuda M, Yamanaka Y, Uemura M, Osawa M, Saito MK, Nagahashi A, Nishio M, Guo L, Ikegawa S, Sakurai S, Kihara S, Maurissen TL, Nakamura M, Matsumoto T, Yoshitomi H, Ikeya M, Kawakami N, Yamamoto T, Woltjen K, Ebisuya M, Toguchida J, Alev C

Nature, 2020

doi:10.1038/s41586-020-2144-9.

Synthetic developmental biology: build and control multicellular systems.

Ebrahimkhani MR, Ebisuya M

Current opinion in chemical biology, 2019

doi:10.1016/j.cbpa.2019.04.006.

Synthetic mammalian pattern formation driven by differential diffusivity of Nodal and Lefty.

Sekine R, Shibata T, Ebisuya M

Nature communications, 2018

doi:10.1038/s41467-018-07847-x.

What does time mean in development?

Ebisuya M, Briscoe J

Development (Cambridge, England), 2018

doi:10.1242/dev.164368.

Secreted Ephrin Receptor A7 Promotes Somatic Cell Reprogramming by Inducing ERK Activity Reduction.

Lee J, Nakajima-Koyama M, Sone M, Koga M, Ebisuya M, Yamamoto T, Nishida E

Stem cell reports, 2015

doi:10.1016/j.stemcr.2015.09.001.

Synthetic lateral inhibition governs cell-type bifurcation with robust ratios.

Matsuda M, Koga M, Woltjen K, Nishida E, Ebisuya M

Nature communications, 2015

doi:10.1038/ncomms7195.

Dual role of YAP and TAZ in renewal of the intestinal epithelium.

Imajo M, Ebisuya M, Nishida E

Nature cell biology, 2015

doi:10.1038/ncb3084.

Foxd1 is a mediator and indicator of the cell reprogramming process.

Koga M, Matsuda M, Kawamura T, Sogo T, Shigeno A, Nishida E, Ebisuya M

Nature communications, 2014

doi:10.1038/ncomms4197.

Regulation of pluripotency in male germline stem cells by Dmrt1.

Takashima S, Hirose M, Ogonuki N, Ebisuya M, Inoue K, Kanatsu-Shinohara M, Tanaka T, Nishida E, Ogura A, Shinohara T

Genes & development, 2013

doi:10.1101/gad.220194.113.

Stemness-related factor Sall4 interacts with transcription factors Oct-3/4 and Sox2 and occupies Oct-Sox elements in mouse embryonic stem cells.

Tanimura N, Saito M, Ebisuya M, Nishida E, Ishikawa F

The Journal of biological chemistry, 2013

doi:10.1074/jbc.M112.411173.

A fasting-responsive signaling pathway that extends life span in C. elegans.

Uno M, Honjoh S, Matsuda M, Hoshikawa H, Kishimoto S, Yamamoto T, Ebisuya M, Yamamoto T, Matsumoto K, Nishida E

Cell reports, 2013

doi:10.1016/j.celrep.2012.12.018.

Synthetic signal propagation through direct cell-cell interaction.

Matsuda M, Koga M, Nishida E, Ebisuya M

Science signaling, 2012

doi:10.1126/scisignal.2002764.

ABL1 regulates spindle orientation in adherent cells and mammalian skin.

Matsumura S, Hamasaki M, Yamamoto T, Ebisuya M, Sato M, Nishida E, Toyoshima F

Nature communications, 2012

doi:10.1038/ncomms1634.

ERK5 regulates muscle cell fusion through Klf transcription factors.

Sunadome K, Yamamoto T, Ebisuya M, Kondoh K, Sehara-Fujisawa A, Nishida E

Developmental cell, 2011

doi:10.1016/j.devcel.2010.12.005.

Revolving movement of a dynamic cluster of actin filaments during mitosis.

Mitsushima M, Aoki K, Ebisuya M, Matsumura S, Yamamoto T, Matsuda M, Toyoshima F, Nishida E

The Journal of cell biology, 2010

doi:10.1083/jcb.201007136.

The closely related RNA helicases, UAP56 and URH49, preferentially form distinct mRNA export machineries and coordinately regulate mitotic progression.

Yamazaki T, Fujiwara N, Yukinaga H, Ebisuya M, Shiki T, Kurihara T, Kioka N, Kambe T, Nagao M, Nishida E, Masuda S

Molecular biology of the cell, 2010

doi:10.1091/mbc.E09-10-0913.

Ripples from neighbouring transcription.

Ebisuya M, Yamamoto T, Nakajima M, Nishida E

Nature cell biology, 2008

doi:10.1038/ncb1771.

Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression.

Yamamoto T, Ebisuya M, Ashida F, Okamoto K, Yonehara S, Nishida E

Current biology : CB, 2006

doi:10.1016/j.cub.2006.04.044.

The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity.

Ebisuya M, Kondoh K, Nishida E

Journal of cell science, 2005

doi:10.1242/jcs.02505.

ERK activation propagates in epithelial cell sheets and regulates their migration during wound healing.

Matsubayashi Y, Ebisuya M, Honjoh S, Nishida E

Current biology : CB, 2004

doi:10.1016/j.cub.2004.03.060.