


1. Introduction: What is Green Computational Research?

At EMBL, data centres represent 
30% of the EMBL’s electricity use. 
That’s 9 GWh per year (9 million 

kWh), equivalent to over 3,000 UK 
households.

Individual projects can have 
significant carbon footprints: 

bioinformatics pipelines range from 
grams to tonnes of CO2e. A single 
analysis can exceed the annual 
target per person of the IPCC* 

(2tCO2e)!

Environmentally sustainable computational research refers to the practice of
designing, developing, and deploying computational methods and systems in a
way that minimizes their environmental impact. 

This goes beyond using energy-efficient hardware; it encompasses a holistic
approach to monitor resource use, reduce carbon footprint and conserve 
resources, and promote ethical practices throughout the research lifecycle.

Computational research is increasingly central to scientific discovery at EMBL,
the energy consumption and resource demands of data centers, 
high-performance computing (HPC) clusters, and individual workstations make
up a significant part of our overall environmental impact. 

Addressing these impacts is a crucial part of our Sustainability Strategy and for
responsible and sustainable scientific progress more widely.

* IPCC - Intergovernmental Panel on Climate Change

https://academic.oup.com/mbe/article/39/3/msac034/6526403
https://academic.oup.com/mbe/article/39/3/msac034/6526403


2. The Environmental Impact of Computing

Energy Consumption
Data centers and computational

facilities consume vast amounts of
electricity, leading to substantial 

greenhouse gas emissions, especially
if powered by fossil fuels.

Resource Depletion
The manufacturing of hardware

requires rare earth minerals and other
finite resources, often extracted 

through environmentally damaging
processes and often in exploited 

countries in the Global South.

E-Waste
The rapid obsolescence of hardware
contributes to a growing problem of 

electronic waste, which can leach toxic
chemicals into the environment if not 

properly disposed of.

Water Usage
Cooling systems in large data centers
require significant amounts of water.

By adopting green computational practices, researchers can contribute to mitigating climate change, conserving natural
resources, and fostering a more sustainable future for science and the planet 🌱



3. The Basics - Key Principles of Sustainable Computational Research

● Energy Efficiency: Prioritize methods and technologies that minimize electricity consumption during computation,
data storage, and data transfer.

● Carbon Intensity: Be aware that carbon intensity differs by location, and at different times of the day. Take
advantage of grids with high renewable power generation, or times of the day with lower carbon intensities (eg,
during the night).

● Sufficiency: Challenge the mindset of “the more the better” - instead ask yourself "What is enough to answer my
research question?" and design your research around this principle.

● Algorithm Efficiency: Select algorithms that achieve desired results with the least computational effort and time.
● Data Management: Key outcome is to minimise data movement - data at rest doesn’t consume energy. 
● Resource Optimization: Make efficient use of hardware, software, and data resources to avoid unnecessary

consumption and waste.
● Hardware Longevity & Reuse: Extend the lifespan of computing equipment and explore opportunities for reuse or

responsible recycling.

Carbon footprint = energy use X carbon intensity



4. The Basics - Data Storage and Management Practices
Data itself has an environmental cost.

● Data Movement: Only move data when necessary, and minimise repetitively moving data.
● Data Reduction: Store only necessary data. Implement data compression, deduplication, and efficient data formats

(e.g., Parquet, HDF5, Zarr) to minimize storage footprint.
● Data Lifecycle Management: Regularly review and delete old or unused data. Implement data retention policies.
● Tiered Storage: Store frequently accessed "hot" data on faster, more energy-intensive storage (e.g., SSDs) and less

frequently accessed "cold" data on slower, more energy-efficient archives (e.g., tape drives, object storage with 
infrequent access tiers).

● Local vs. Cloud Storage: Consider the energy implications of transferring large datasets to and from the cloud
versus processing them locally.

The Data Management Application

(DMA) is a tool to assist you in 

managing and documenting your data

lifecycle from production to archiving.



5. The basics - Hardware Choices and Management

Your hardware decisions have a direct impact.

● Energy-Efficient Hardware: When purchasing new equipment, prioritize
energy-efficient CPUs, GPUs, and storage devices. Look for Energy Star ratings
or similar certifications.

● Green EMBL Tick: When purchasing from EMBL’s standard hardware
catalogue, purchase the products which have been given the Green EMBL Tick,
which identifies the more sustainable option.

● Extend Hardware Lifespan: Avoid unnecessary upgrades. Maintain equipment
to ensure it runs efficiently for as long as possible.

● Shared infrastructures: when running demanding tasks, use shared computing
infrastructures. This avoids purchasing dedicated servers that would be 
underutilised and operated less efficiently.

● Virtualization: Maximize the utilization of physical servers by running virtual
machine (VM) servers, reducing the number of physical machines needed.

● Responsible Disposal: When hardware is no longer needed, but still work, post
it on EMBL’s Freecycle database. When hardware reaches end-of-life, ensure it 
is disposed of in one of EMBL’s e-waste bins.

Look for hardware with the Green EMBL

Tick when shopping from EMBL’s 

hardware catalogue! 



6. The Basics - FAIR and Open Science

By adhering to these principles, researchers not only enhance the impact and integrity of their work but also contribute to a more 
efficient and sustainable global research ecosystem by avoiding duplicated efforts and maximizing the utility of existing computational 
investments.

● FAIR principles (Findable, Accessible, Interoperable, and Reusable): While not directly about energy, adhering to 
these principles significantly contributes to sustainability by maximizing the value and minimizing redundant efforts in 
the scientific community.

● Open Science: Sharing code, data, and methodologies allows others to build upon existing work, avoiding redundant efforts and 
promoting efficiency across the research community. For support and to view EMBL’s Open Science Policy, contact the Office for 
Scientific Information Management (OSIM)

On-demand training resource: 

Good data management and 

FAIR principles.

https://www.embl.org/internal-information/office-for-scientific-information-management/open-science-support/
https://www.ebi.ac.uk/training/materials/data-science-for-life-scientists-materials/data-science-a-broader-view/good-data-management-making-your-data-fair/


7. The basics - Monitoring and Assessing Sustainability in Computational Research

You can’t manage what you don’t measure.

● Energy Consumption Monitoring:
○ Hardware Level: Use power meters for individual machines or server racks.
○ Software Level: Online calculators like Green Algorithms, Python packages like CodeCarbon, or server side tools

like GA4HPC can estimate energy consumption of specific processes or code blocks.
● Carbon Footprint Estimation: Online tools like CodeCarbon can translate energy consumption into estimated CO2

emissions, often using regional electricity grid carbon intensity data. The Sustainability Office can also help with this.
● Resource Utilization Monitoring: Use system monitoring tools (e.g., htop, nvidia-smi, cloud provider dashboards) to

track CPU, GPU, memory, and disk usage.
● Life Cycle Assessment (LCA): For hardware, check if your products manufacturer provides a comprehensive Life

cycle assessment which evaluates the environmental impacts of hardware from manufacturing to use to disposal.

http://calculator.green-algorithms.org/
https://www.green-algorithms.org/GA4HPC/
https://codecarbon.io/


8. Resources

Environmental Impacts of Machine Learning 
Applications in Protein Science

Papers

GREENER principles for environmentally 
sustainable computational science

Ten simple rules to make your computing 
more environmentally sustainable

The carbon footprint of bioinformatics

Carbon footprint estimation for 
computational research

Communities

Environmentally 
Sustainable 
Computational 
Science
Community

Tools

Green 
Algorithms 
calculator

Green Algorithms 
4

HPC

Lectures

https://cshperspectives.cshlp.org/content/15/12/a041473
https://cshperspectives.cshlp.org/content/15/12/a041473
https://codecarbon.io/
https://www.nature.com/articles/s43588-023-00461-y
https://www.nature.com/articles/s43588-023-00461-y
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009324
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009324
https://academic.oup.com/mbe/article/39/3/msac034/6526403?login=true
https://www.nature.com/articles/s43586-023-00202-5
https://www.nature.com/articles/s43586-023-00202-5
https://greensoftware.foundation/
http://escs-community.org
https://calculator.green-algorithms.org/
https://www.green-algorithms.org/GA4HPC/
https://embl-ebi.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=16c22250-ef3e-41e8-ba5d-af50010c7c0c
https://mediasite.embl.de/Mediasite/Channel/seminars/watch/7aac26a0527a4f0bac0d4227b164a4601d


Green DiSC

EMBL is taking part in Green DiSC, a certification scheme designed to help 
research groups and institutions address the environmental impact of their 
computing activities.

The scheme provides a roadmap for sustainable computational research, 
with different levels of certification (Bronze, Silver, and Gold) that groups 
can work towards. The criteria are focused on practical, evidence-based 
actions that can reduce the environmental footprint of research computing.

Is your group taking part?
More information and guidance to enrol is available here.



Optional - Sufficiency - A Deeper Dive

● Choosing Simpler Models: Before reaching for a massive deep
learning model, consider if a simpler, more efficient statistical
model or machine learning algorithm would provide a sufficient
level of accuracy and insight. These simpler models require
significantly less computational power for training and inference.

● Working with Representative Data Subsets: Instead of
processing a massive dataset, consider if a smaller, statistically
representative sample be used for development, debugging, and
initial analysis? This can drastically reduce the computational
resources needed for exploratory work.

By embracing the principle of sufficiency, you proactively reduce the demand for computational resources, leading to a
smaller environmental footprint and fostering a more mindful, “good-enough” approach to your research. Remember to ask
yourself "When do I have enough to answer my research question?"

● Using Lower Precision: In many scientific and machine learning
applications, using standard 64-bit floating-point numbers is not
necessary. Utilizing 32-bit (single-precision) or even 16-bit
(half-precision) floating-point formats is good enough and can cut
memory usage and computational time, leading to significant energy
savings without compromising the validity of the results.

● Defining Clear Stopping Criteria: For iterative processes like
simulations or model training, establish clear and effective
convergence criteria. Stop the computation as soon as a good
enough level of accuracy is reached, rather than continuing for
marginal improvements.



Optional - Code and Algorithm Optimization - A Deeper Dive

The most impactful changes often start with your code.

● Choose Efficient Algorithms: Before writing code, research and select algorithms known for their computational efficiency (e.g., lower time 
and space complexity). A less efficient algorithm, even on powerful hardware, can consume significantly more energy.

● Optimize Code for Performance:
○ Vectorization: Utilize multi-core processors and GPUs effectively which can dramatically speed up computations, reducing the total 

runtime and thus energy. Libraries like NumPy and TensorFlow are designed specifically to make this kind of parallel computation easy 
to write and execute.

○ Memory Management: Efficiently manage memory to reduce data movement between RAM and CPU cache, or between main memory 
and storage including cloud based. This can significantly impact energy consumption.

○ Avoid Redundant Computations: Cache results of expensive computations if they are reused.
○ Profile Your Code: Use profiling tools (e.g., cProfile in Python, perf in Linux) to identify bottlenecks in your code. Focus optimization 

efforts on these critical sections.
○ Choose Efficient Programming Languages: While personal preference and project requirements are key, some languages are 

inherently more performant (e.g., C++, Fortran, Rust) than others (e.g., Python, R) for raw computation. Consider using optimized 
libraries or writing performance-critical sections in more efficient languages.

● Early Stopping/Convergence Criteria: For iterative algorithms (e.g., machine learning training, simulations), define clear and effective 
convergence criteria to stop computation as soon as sufficient accuracy is achieved, avoiding unnecessary iterations.

🧐 Want to know more - check out this wiki - https://wiki.embl.de/cluster/Knowhow 



Optional - Vectorization - A Deeper Dive

In a practical sense, it means instead of a computer processor (or GPU) performing a calculation on a single piece of 
data, it performs the same calculation on an entire block of data simultaneously.

For example, if you have a list of a million numbers and you need to multiply each one by 2, a traditional, non-parallel 
approach would be to loop through each number one by one. A vectorized or parallel approach would be to tell the 
processor to multiply all million numbers by 2 in a single instruction, distributing the work across multiple cores or a 
GPU's thousands of cores. 

This drastically reduces the time it takes to complete the task, which in turn reduces the energy consumed.

The process of converting operations that are applied repeatedly to a 
single operation that is applied to entire arrays or vectors at once.

Graphic - https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/6-6-1-985.html



Optional - Memory Management - A Deeper Dive

A computer's different types of memory, each with a different 
level of effort required to access them.
CPU Cache: It's the fastest and easiest to access, but there's 
very little space.
RAM (Main Memory): It's slower than the CPU cache, but you 
can fit a lot more there.
Hard Drive/SSD (Storage): It can hold a large amount of stuff, 
but it takes a long time and a lot of effort to go there and find 
what you need.
Cloud storage: Can hold a massive amount of data, and accessible 
from anywhere. But the process is slower due to network latency 
and consumes a significant amount of energy for both the data 
transfer itself and the physical infrastructure required to move it.

Minimizing the energy cost of moving data around within a 
computer's architecture.

Vestibulum nec 
congue tempus

Vestibulum nec congue tempus

Ram

Ve
st

ib
ul

um
 n

ec
 co

ng
ue

 te
m

pu
s

Hard Drive/SSD
Slowest / least energy intensive

CPU Cache
Fastest / most energy intensive

Vestibulum
 nec congue tem

pus

What your code should do:
By writing code that efficiently manages what data is 
where, you reduce unnecessary data movement, leading 
to shorter execution times and lower energy use.
Keep "Hot" Data Close: Your program should be written 
to keep frequently used data in the fastest memory, like 
the CPU cache or RAM.
Avoid the "Long Trip": Moving data from storage 
(SSD/HDD) to RAM is slower and consumes more energy. 
Plan cloud storage: minimize how often you need to 
fetch or save data to cloud storage. For research, this 
means planning your data access. For example, download 
a large dataset once, process it locally and then upload 
only the final, processed results, rather than repeatedly 
accessing small chunks of data from a cloud.



Optional - Profiling Your Code - A Deeper Dive

Static profiling: analyzing the code without executing it. It helps to 
identify potential performance issues in the code before it is 
executed. 

Dynamic profiling: analyzing the code while it is running, 
providing real-time data on the performance which can identify 
actual performance issues.

a process of analyzing the performance of code by measuring the 
time it takes to perform each function or block.

Example Profiling Tools
These tools can help you identify performance bottlenecks 
by measuring execution time and function calls.
For Python:
cProfile, built into Python's standard library.
Scalene: A powerful and modern profiler that measures 
CPU time, memory, and even estimated energy 
consumption.
For C++:
Valgrind (with Callgrind): A versatile suite of tools. Callgrind 
is a profiler that records detailed information on function 
calls, which can then be visualized with a GUI like 
KCachegrind.
For Java:
Java VisualVM: A lightweight and user-friendly tool 
included with the JDK. It provides visual monitoring of 
CPU, memory, and thread activity.
JProfiler and YourKit: Commercial profilers that offer 
extensive features for monitoring CPU, memory, and 
threads with low overhead.

For environmentally sustainable computing, this is a critical step. By 
using a profiler, you can pinpoint the specific "hotspots" or bottlenecks 
in your program. This allows you to focus optimization precisely where 
they will have the greatest benefit, reducing the total runtime and 
energy consumption. Without profiling, you might waste time optimizing 
a part of your code that contributes little benefit to the overall power 
usage.



Optional - Cloud Computing and HPC Considerations - A Deeper Dive

While cloud providers offer scalable resources, their use requires careful consideration for sustainability.

● Choose Green Cloud Providers/Regions: When possible, select data centers located in regions with a lower 
carbon intensity of power generation. You can compare regions here. 

● Right-Sizing Instances: Provision only the necessary computational resources (CPU, RAM, GPU). Over-provisioning 
leads to wasted energy. Utilize auto-scaling features where appropriate.

● Spot Instances/Preemptible VMs: For fault-tolerant workloads, using cheaper spot instances can be more 
resource-efficient as they utilize otherwise idle capacity.

● Serverless Computing: For intermittent tasks, serverless functions (e.g., AWS Lambda, Google Cloud Functions) 
can be more energy-efficient as you only consume energy for the exact execution time.

● Containerization: Containers can improve resource utilization by packaging applications and their dependencies, 
leading to more efficient deployment and less overhead.

● Schedule Workloads Strategically: Run non-urgent computations during off-peak hours when electricity demand 
(and often carbon intensity) is lower.

https://ourworldindata.org/grapher/carbon-intensity-electricity


Optional - FAIR Principles - A Deeper Dive

Findable: Ensure your research outputs (data, code, models, methodologies) are 
easily discoverable by both humans and machines. This involves:

● Assigning Persistent Identifiers (PIDs): Use DOIs (Digital Object Identifiers) for 
datasets and code repositories.

● Rich Metadata: Provide comprehensive and accurate metadata that clearly 
describes the data, methods, and software used, including authors, dates, keywords, 
and data provenance.

● Registration in Repositories: Deposit your outputs in well-indexed, 
community-recognized repositories (e.g., Zenodo, Figshare, GitHub with proper 
metadata).

Accessible: Once found, ensure your research outputs can be accessed, ideally 
through open and standardized communication protocols. This means:

● Open Access: Make data and code openly available where possible, respecting 
ethical and privacy considerations.

● Clear Access Conditions: If access is restricted (e.g., for sensitive data), clearly 
state the conditions and procedures for obtaining access.

● Standard Protocols: Use common and open protocols (e.g., HTTP, FTP) for data 
retrieval:

Interoperable: Ensure your research outputs can be integrated with other data 
and tools, and are compatible with various applications or workflows. This requires:

● Standard Formats: Use widely accepted, open, and machine-readable data and 
code formats (e.g., CSV, NetCDF, HDF5 for data; common programming languages 
for code).

● Standard Vocabularies/Ontologies: Employ shared vocabularies, ontologies, and 
controlled terms to describe data, enabling consistent interpretation and integration 
across different datasets.

● API Documentation: For software or services, provide clear API documentation to 
facilitate programmatic access and integration.

Reusable: Promote the reuse of your research outputs by others, including for 
new research questions or in different contexts. This is achieved by:

● Clear Licensing: Apply clear and open licenses (e.g., Creative Commons, MIT, 
Apache) to both data and code, specifying how they can be used and shared.

● Detailed Documentation: Provide thorough documentation for code, data, and 
methodologies, explaining how they work, their limitations, and examples of usage.

● Reproducibility: Ensure that your research can be reproduced by others, reducing 
the need for redundant experiments and computational efforts. This means 
providing all necessary components (data, code, environment specifications) to 
re-run analyses and obtain the same results.



With thanks to:
Loic Lannelongue

Jurij Pečar

EMBL-EBI Training

EMBL IT Services

Content created with the help of Google Gemini on 7th 

August.

Do you have ideas to add to this 
guide?
Contact sustainability@embl.org to 
share.

mailto:sustainability@embl.org



