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Embedding vision models in RL environments
To study how ecology constrains visual processing, we present a reinforcement
learning (RL) framework in which an agent aims to survive in a 3-d environment
that it perceives through a vision model. Our code is built on

• PyTorch, the DNN library we use to implement vision models,
• Sample Factory [2], a deep RL library that we use to train agents, and
• ViZDoom [3], an RL environment engine based on Doom.
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Varying the visual complexity of a task

The agent has “satiety” from 0 to 100, and
continuously loses satiety. To survive and thrive, it
must solve a visually-guided foraging task.

• Nourishment and poison are randomly
distributed in the environment.

• We modulate task difficulty by varying the
diversity of the nourishment/poison.

RL Primer: We describe the world in terms of states
s, actions a, and rewards r .

• transition distribution: p(s′ | s,a)
• policy: π(s) = p(a | s)
• action-value function:

Qπ(s,a) = Eπ[
∑∞

t=0 γ
tRt | S0 = s,A0 = a]

• policy gradient theorem:
∂
∂θE

π[
∑∞

t=0 γ
tRt] =

∫
S µ

π(s)
∫
A

∂π(s|a)
∂θ Qπ(s,a)da ds
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Brain complexity scales with visual complexity
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Complex recognition recruits recurrent connectivity
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• Histogram of food pickup frequency shows how good the agent is at
distinguishing foods.

Satiety signals enable unique behaviours
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• Satiety signals allow agents to strategize around nourishment magnitude.
• Wasted nourishment occurs when nourishments yields 100 > 0.

Brain architecture drives different representations
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• Linear regression on the estimated value function V̂ shows the importance of
environmental variables to its representation of the world.

• V π(s) = Eπ[
∑∞

t=0 γ
tRt | S0 = s].

Conclusion and Outlook
We have lain foundations for modelling ecological constraints on vision and shown:

1 how to bridge established results from DNN vision models [1] into a dynamic
RL setting,

2 that rich behaviours and representations emerge even on simple tasks, and
3 that brain architecture and visual complexity interact in nontrivial ways.

Building on this, our next goals are to explore:
1 more complex environmental objects such as predators,
2 adding metabolic costs for the magnitude of network activity to induce

“implicit” efficient coding, and
3 modelling tradeoffs between minimizing image reconstruction error and

task-relevant efficient codes.
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