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Embedding vision models in RL environments Complex recognition recruits recurrent connectivity
To study how ecology constrains visual processing, we present a reinforcement Apples Gabors
learning (RL) framework in which an agent aims to survive in a 3-d environment 0 i _
that it perceives through a vision model. Our code is built on o ==

o PyTorch, the DNN library we use to implement vision models, G

o Sample Factory [2], a deep RL library that we use to train agents, and g o '

e ViZDoom [3], an RL environment engine based on Doom.
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" e Histogram of food pickup frequency shows how good the agent is at
e \ | / distinguishing foods.
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ContinUOUSIy loses Satiety. To survive and thrive, It _Iq—_,) Velocity Actions Architecture
must solve a visually-guided foraging task. (‘})‘5
e Nourishment and poison are randomly » Satiety signals allow agents to strategize around nourishment magnitude.
3\'/5””3“;9? 't” tthe fg\'/flfr'ong]egt. - > o Wasted nourishment occurs when nourishments yields 100 > 0.
o We modulate task difficulty by varying the =
diversity of the nourishment/poison. @ . . . . .
RL Primer: We describe the world in terms of states = Brain architecture drives different representations
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Brain CompleXlty scales with visual compIeXIty o Linear regression on the estimated value function V shows the importance of

Apples Gabors CIFAR-10 environmental variables to its representation of the world.
| o V() =E" 7' R | So=sl.

Conclusion and Outlook

We have lain foundations for modelling ecological constraints on vision and shown:
how to bridge established results from DNN vision models [1] into a dynamic

R ° RL setting,
£ 30007 —— ' A - N that rich behaviours and representations emerge even on simple tasks, and
) 2000- - = . % ® that brain architecture and visual complexity interact in nontrivial ways.
§ | - . Building on this, our next goals are to explore:
— i A : :
8 1] . N A ¢ more complex environmental objects such as predators,
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modelling tradeoffs between minimizing image reconstruction error and
— task-relevant efficient codes.
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