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Motivation Objectives

- Phenotypic variation: crucial role in evolutionary
biology; acts as the substrate on which selection can
act to drive evolutionary change.
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- Understand how the trichome gene regulatory
network gives rise to regular patterns. What are the
minimal requirements for pattern formation, given the
complexity of the network?
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- Understanding the origins of phenotypic variation
requires a detailed characterization of the underlying
developmental processes, how these emerge as
outcomes of gene regulatory networks, and how they
iInteract with the environment.
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- Determine the structure of the genotype-phenotype
map for trichome patterns: how can we understand this
phenotypic variation using dynamical systems and
bifurcation theory”?

- Plant trichomes: specialized epidermal cells that

rotect plants from insect herbivores and UV light, i .
P P . J - Understand the developmental constraints inherent
increase tolerance to freezing, regulate plant water _
loss and temperature. N .the structure of thg genotypg-phenotype Map. .ierming satterning ( '

| | | Which patterns are possible and which are not? module 1 module 2 trichome

- Trichomes are usually organized in regular patterns, @ e D

but they display high variability upon environmental | « Beyond static tissues: trichome patterns are formed %{g
perturbations and mutations. Younger leaves display during leaf growth. How does patterning occur when @ ol @ \
different trichome patterns than older leaves cells grow and divide? low pavement

(heteroblasty).

Trichome patterning modules display rich dynamical behaviors, leading to pattern diversity
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Other kinds of possible patterns:

Stability and bifurcations When both TTG1 and
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diffuse: spots and stripes
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Conclusions

We propose a theoretical framework to understand the
diversity of trichome patterns using dynamical systems
theory.

By analyzing the spatiotemporal dynamics of a

Trichome patterning in growing tissues

Dynamics of trichome intercalation: how do new
trichomes appear (or not) during tissue growth?

- 1d cellular tissue with

_ cell g = ge — — minimal trichome network, we explore the fundamental
exponential cell growth  size mechanisms underlying the routes to patterning.
Our framework provides a direct way to compare
- Stochastic cell _g /vSl =S8./2+¢ - — L theory and experiments through quantitative spatial
division (sizer) ¢ ¢ S, =8/2-€ ) S, " Sope S, statistics.
2 2 Starting point to understand patterning dynamics In

¢ : random number growing tissues. Each region in parameter space has

Synchronized intercalation close to a different patterning behavior upon tissue growth.

the instability: no mode coexistence

Unsynchronized intercalation far

Wavelength dynamics: from instability: mode coexistence
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