

THE LEI GROUP

Chemical Biology, Organic Synthesis, Medicinal Chemistry

Characterization and Heterologous Reconstitution of Taxus Biosynthetic Enzymes Leading to Baccatin III

Bin Jiang^{1#}, Lei Gao^{2#}, **Haijun Wang^{2#}**, Yaping Sun^{1,3#}, Xiaolin Zhang¹, Han Ke², Shengchao Liu¹, Pengchen Ma⁴, Qinggang Liao¹, Yue Wang¹, Huan Wang¹, Yugeng Liu¹, Ran Du¹, Torben Rogge⁴, Wei Li¹, Yi Shang⁷, K. N. Houk⁴, Xingyao Xiong¹, Daoxin Xie⁵, Sanwen Huang¹, **Xiaoguang Lei^{2,6*}**, Jianbin Yan^{1*}

¹Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences; Shenzhen, China. ²Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University; Beijing, China. ³College of Life Sciences, South China Agricultural University; Guangzhou, China. ⁴Department of Chemistry and Biochemistry, University of California, Los Angeles; Los Angeles, CA, USA. ⁵Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University; Beijing, China. ⁶Institute for Cancer Research, Shenzhen Bay Laboratory; Shenzhen, China. ⁷Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University; Kunming, China.

[#]Co-first author. *Corresponding author.

Abstract: Paclitaxel is a well-known anticancer compound. Its biosynthesis involves the formation of a highly functionalized diterpenoid core skeleton (**baccatin III**) and the subsequent assembly of a phenylisoserinoyl side chain. Despite intensive investigation for half a century, the complete biosynthetic pathway of baccatin III remains unknown. Here, we identified a bifunctional cytochrome P450 enzyme (**Taxane oxetanase, TOT**) that catalyzes an oxidative rearrangement in paclitaxel oxetane formation, representing a previously unknown enzyme mechanism for oxetane ring formation. We created a screening strategy based on the taxusin biosynthesis pathway and uncovered the enzyme responsible for the taxane oxidation of the C9-position (**T9\alphaH**). Finally, we artificially reconstituted a biosynthetic pathway for the production of **baccatin III** in tobacco.

Chloroplast / Plastid DMAPP

Background and Significance

Paclitaxel, derived from the secondary metabolism of *Taxus* genus plants in Taxaceae, has been clinically used to treat various cancers.

Important ovarian, breast cancer treatment worldwide.

○ ♦ Global demands exceed a metric tonne annually.

TOT1 is responsible for oxetane formation

Structural core available from European Yew Taxus Baccata allows semisynthesis, production

Biosynthesis of Paclitaxel:

One strategy currently used to produce paclitaxel is chemical semisynthesis, using paclitaxel precursor **baccatin III**. However, several essential steps in forming **baccatin III** remain unknown.

Identification of T9αH1 for C9 hydroxylation

Biosynthetic pathway constitution of baccatin III

Research on bioactive plant natural products:

(1) Biosynthesis of plant natural products.

(2) Identification of new functional plant natural products.

https://www.chem.pku.edu.cn/leigroup/index.htm

Acknowledgements:

The National Natural Science Foundation of the Peoples' Republic of China. The National Key Research and Development Program of China. The Beijing Outstanding Young Scientist Program.