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Abstract

DNA lesions predispose to genomic instability, a hallmark of cancer; therefore cells have evolved repair pathways to solve those harmful
insults. Double-strand breaks (DSBs) represent the most lethal DNA damage first marked by the phosphorylation of the histone H2A.X
(YH2A.X) which triggers the recruitment of sensor proteins belonging to either the error-prone non-homologous end joining (NHEJ) or the
Ku70 Kug0 efficient homologous recombination (HR) pathway. It is now established that chromatin has an active role also in DNA repair, thus its
P ./ characterization at DSB repair foci is essential to better understand the coordinate action of the repair mechanisms and to identify novel

signal transducing o— players participating in tumor-associated apoptotic resistance and cell survival.

s Here we dissect chromatin changes upon exposure to ionizing radiations through multiple proteomics-based approaches. We applied the
Selective Isolation of Chromatin-Associated Protein strategy (ChIP-SICAP; Rafiee, 2016) to investigate the interactors of core NHEJ, HR

) B proteins and yH2A.X while bound to the DNA or in the chromatin soluble fraction. Through a click chemistry-assisted procedure we profiled
Eﬁector kinaseﬂ P CHK2. \\ the configuration of DNA-bound proteins during DSBs repair; finally we analyzed the histone post-translational modifications (hPTMs)
NG cross-talk at mono-nucleosomes marked by yH2A.X.
| | - - Our integrated analysis identified the dynamics of expected chromatin determinants during the DNA repair and interestingly suggested
 effector proteins o0 Cde25B/C the role for new candidates specifically enriched upon DSB formation. Validation experiments based on monitoring of DSB foci formation
/\ @@ @ /\ and resolution in AID-DIVA cells proficient or knock-down cells provided evidence of a role for novel candidates in DNA repair. FACS-based
g Dloep oy Ees J N Fiemxp analysis of Traffic-light Reporter (TLR) isogenic cells upon silencing of proteins identified by MS characterized their functional role in NHEJ,
5, Phosphorylated by Laist g HR or pathway choice. Furthermore, we defined hPTMs associated with yH2A.X-marked mono-nucleosomes and their dynamics during DSB

P . ) )

= CHK2/CHK1 t t t Il | h k t ] ] ] | ] n ] n ] || ] ]
TSCTPIen  SPOPIeSE edithetistln resolution. This analysis corroborated expected enrichments (e.g. H4K20me1/me2) and provided insights on new modifications specifically

From Freeman and Monteiro Cell Communication and Signaling 2010 enriched at VH 2A.X-nucleosomes.

KI. hPTMs cross-talk during DNA damage \/2 Functional ON-chromatin interactors of NHEJ, HR and yH2AX identified by SICAP \

A) Time-course hPTMs profiling upon IR at mono-nucleosome resolution A) Selective Isolation of Chromatin-Associated proteins in NHEJ and HR B) Dynamic profiling of yH2AX-associated proteins during DSBs repair
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Conclusion and remarks

* At mono-nucleosome resolution the analysis of yH2AX-associated hPTMs suggests local (DDR mono-nuclesomes) cross-talks and dynamics compared to global chromatin (input).
e The integrated analysis between chromatin-associated proteins specifically characterize the functional interactors of either HR or NHEJ core components while on the DNA.

* The time course ChIP-SICAP experiment of yH2AX identifies the time-dependent dynamics of determinants upon IR and shed light on novel targets in DSB repair e.g. THRAP3
e DNA-bound proteome (iPOC) outperforms deep chromatin proteome by profiling both determinants with functional role in DSB repair pathways and chromatin modifiers.
e Orthogonal functional validation determines the role in DDR for proteomic candidates and identifies novel players of HR repair, thus opening therapeutic opportunities with PARPI.
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