

HEIDELBERG

UNIVERSITY

HOSPITAL

PHONEMeS 2.0: Systematic integration of phosphoproteomic data with comprehensive molecular interaction prior knowledge to model signalling networks

Sophia Müller-Dott, Aurelien Dugourd, Julio Saez-Rodriguez

Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany

Inferring signalling cascades from phosphoproteomic data

How to model changes in intracellular signalling networks

Prior knowledge network Target kinases of perturbation a priori known or putative

Network contextualisation-

Combining phosphoproteomics data and prior knowledge

Deregulated phosphorylation sites

Consisting of kinase-substrate and protein-protein interactions

Identifying **smallest coherent path** connecting perturbed kinases to deregulated phosphorylation sites

Identifying putative perturbed kinases

Footprint-based activity estimation

A footprint of a kinase is the collection of downstream phosphorylation sites regulated by it. These reflect the regulatory state of a kinase and can be used to robustly infer its activity. Prior knowledge is required to link phosphorylation sites to the respective kinase. For the estimation of kinase activities, existing computational approaches summarise changes in abundance of phosphorylation sites into an activity score for each kinase. This allows the **identification of deregulated kinases upon perturbation**.

phosphoproteomics

Case study: Elucidation of Metformin-Signalling in Heterogenous Colorectal Cancer Cells

12 colon cancer cell lines were treated with Metformin and

Kinase activity estimation

Input selection

Deregulated

phosphorylation sites

Metformin-perturbed

kinases

AMPK-focused network contextualisation

phosphoproteomic data was generated

Differences between cell lines in response to metformin induced AMPK activation and downstream signal propagation

How to run PHONEMeS 2.0 with your data

All our tools are freely available on GitHub <u>https://github.com/saezlab</u> or bioconductor. We also provide a tutorial on how to run PHONEMeS: <u>https://github.com/saezlab/PHONEMeS/blob/master/vignettes/tutorial.md</u>. Feel free to contact us for support: sophia.mueller-dott@uni-heidelberg.de

Acknowledgment

References

We would like to thank our collaborators Barbora Salovska and Yansheng Liu from the Yale School of Medicine. This work is financed by the LiSyM-Cancer and the SMART-CARE research cores supported by the German Federal Ministry of Education and Research.

Gjerga et al. (2021) PHONEMeS: Efficient Modeling of Signaling Networks Derived from Large-Scale Mass Spectrometry Data. J. Proteome Res. https://doi.org/10.1021/acs.jproteome.0c00958 Badia-i-Mompel et al. (2022). decoupleR: Ensemble of computational methods to infer biological activities from omics data. Bioinformatic Advances. https://doi.org/10.1093/bioadv/vbac016 Salovska[#], Gao[#], Müller-Dott[#], et al. (2022). Deep Phosphoproteomic Elucidation of Metformin-Signaling in Heterogenous Colorectal Cancer Cells. BioRxiv. https://doi.org/10.1101/2022.07.07.499038