

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Reconstructing transitions between dynamical regimes driven by unknown variables using universal normal forms

Juan Diaz, Rohit Kumar, David Gomez Cabrero, Narsis A. Kiani & Jesper Tegner

Normal Form Selection for Unknown Equations

- Current predicted models are unstable (stiffness).

Formalizing the Notion of Hidden Variables

	$x_0 = time'$ $x'_1 = \alpha'$				IHCV								
				1 Tra	ijectory (T								
	$x'_2 = Hc$	ppf_1	R ² Deriv		R ² State MSE		ЪЕ						
$x'_3 = H$		opf ₂	0.72363		0.9954	0.17042							
	1.16		SINDY										
	Inrary												
	Sizo		1 T		1	4 T			6 T		-		
	Size	R ² Deriv	1 T R ² State	Stiff-Ratio	R ² Deriv	4 T R ² State	Stiff-Ratio	R ² Deriv	6 T R ² State	Stiff-Ratio	R ² Der		
	Size	R ² Deriv 0.02	1 T R ² State 0.16	Stiff-Ratio	R ² Deriv	4 T R ² State 0.30	Stiff-Ratio	R ² Deriv 0.01	6 T R ² State 0.40	Stiff-Ratio	R ² Der		
	Size	R ² Deriv 0.02 0.76	1 T R² State 0.16 0.79	Stiff-Ratio 1.00 317.10	R² Deriv 0.00 0.41	4 T R² State 0.30 0.37	Stiff-Ratio 1.00 238.35	R ² Deriv 0.01 0.33	6 T R ² State 0.40 0.54	Stiff-Ratio 1.00 399.18	R ² Der		

Saddle Node-Pitchfork Hybrid System:

 $x' = r_1 + x^2 + w_{ux}y$ (Saddle Node) $y' = r_2 y - y^3 + w_{xy} x$ (Pitchfork) Saddle Node-Hopf Hybrid System:

 $x' = r_1 + x^2 + W$ (Saddle Node) $\dot{y} = \mu y - z - y(y^2 + z^2) + W$ (Hopf) $\dot{z} = y + \mu z - z(y^2 + z^2) + W$ (Hopf) Saddle Node-Transcritical Hybrid System:

> $x' = r_1 + x^2 + W$ (Saddle Node) $y' = r_2 y - y^2 + W$ (Transcritical)

Pitchfork-Hopf Hybrid System:

DISCOVERY FOR UNKNOWN SYSTEMS

 $x' = r_1 x - x^3 + W$ (Pitchfork) $\dot{y} = \mu y - z - y(y^2 + z^2) + W$ (Hopf)

Pitchfork-Transcritical Hybrid System:

 $x' = r_1 x - x^3 + W$ (Pitchfork) $y' = r_2 y - y^2 + W$ (Transcritical)

Hopf-Transcritical Hybrid System:

0.90

 $\dot{x} = \mu x - y - x(x^2 + y^2) + W$ (Hopf) $\dot{y} = x + \mu y - y(x^2 + y^2) + W$ (Hopf) $z' = r_2 z - z^2 + W$ (Transcritical)

5	0.77	-0.04	9309.00	0.71	-3.61	192.50	0.09	0.45	550.21	0.07	0.25	425.21
4	0.77	0.23	13715.28	0.74	-	31.41	0.72	-	60.49	0.68		447.84
5	0.75	-20.23	381.45	0.75	-	95.47	0.74		26.82	0.71	-0.08	402.31
6	0.28	0.44	23473.88	0.74	ł	3924.49	0.75	-118.55	38.76	0.71		410.84
7	0.28	0.44	23473.88	0.65	-0.09	173.56	0.72	0.26	396.53	0.71	-	402.43
8	0.28	0.44	23252.23	0.23	-	Inf	0.34	0.12	388.81	0.70	-1.02	402.82
9	0.51		Inf	0.37	-0.50	443.52	0.31	0.48	364.97	0.63	-0.53	431.73
10	-2.5E+26	1	NaN	0.12	-	Inf	0.13	-	Inf	0.11	-	Inf
11	-2.5E+26	1	NaN	-3.1E+25	-	NaN	-3.7E+25	n de la companya de la	Inf	-4.6E+25		Inf
12	-2.5E+26	-	NaN	-3.1E+25	-	NaN	-3.7E+25	-	NaN	-4.6E+25	_	NaN
13	-2.5E+26	-	NaN	-3.1E+25	_	NaN	-3.7E+25	-	NaN	-4.6E+25	-	NaN
14	-2.5E+26	li si a	NaN	-3.1E+25	-	NaN	-3.7E+25		NaN	-4.6E+25	-	NaN
15	-2 5E+26		NaN	-3 1E+25		NaN	-3 7E+25		NaN	-4 6E+25		NaN

Learning New Dynamical Regimes

16 T

R² State Stiff-Ratio

1.00

416.23

465.00

0.35

0.58

0.03

Original y(t)

 $\dot{z} = y + \mu z - z(y^2 + z^2) + W$ (Hopf)

References

- 1. Wang, J. (2022). Perspectives on landscape and flux theory. J. Biol. Phys., 48(1), 1–36.
- 2. He, X., et al. (2023). gLaSDI: Parametric physics-informed greedy latent space dynamics identification. J. Comput Phys., 489, 112267.
- 3. Laiz, R. G., et al. (2024). Self-supervised contrastive learning performs non-linear system identification. arXiv:2410.14673.
- 4. Strogatz, S. H. (2018). Nonlinear Dynamics and Chaos. CRC Press.

Future Research

We aim to capture complex transitions and dynamical shifts in intricate systems. Building on our current work with two normal form combinations (e.g., Saddle-Hopf, Saddle-Pitchfork), we plan to expand to 4–6 combinations, constructing a comprehensive library of normal forms to model these systems more effectively. Such dynamics remain underexplored in high-dimensional data applications. Thus, we will address scalability by extending IHCV to higher-dimensional systems.