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Abstract (short): 
Antimicrobial peptides (AMPs) remain a staple in last-resort treatment against 
antibiotic resistant organisms, yet state-of-the-art computational methods result in low 
success rates in vivo. We computationally investigate which numerical representation 
of amino acid sequences correlate with antimicrobial activity. It is shown that state-of-
the-art methods can not discriminate a sequence from its shuffled permutation. 
Naturally, a shuffled amino acid sequence leads to differential activity in vivo. This 
failure mode is necessarily the case, as most physicochemical descriptors are 
permutation invariant, making the task of classifying shuffled sequences impossible. 
We stress the importance of careful embeddings and their associated symmetries 
when using AI/DL for biological tasks. We develop a geometric deep learning method 
to overcome permutation invariance and predict activity from sequence. 

� � Introduction

The sustained promise of antimicrobial peptides in the post-antibiotic
era The promise and potential of antimicrobial peptides have been
explicitly noted in the ����s, ����s, ����s, and ����s. [�, ��–��] This
remains the contemporary view for the following reasons:

Resistance to antimicrobial peptides is rare, and in the case of Vancomycin
(a glycopeptide) took �� years until it was observed [��]. Likewise, with
colistin, it has also been shown that resistance only emerges as many
epistatic mutations collect, which leads to a resistant phenotype [��].

Unlike conventional antibiotics (the �-lactams, carbapenems, sulfon-
amides, and fluoroquinolones), antimicrobial peptides primarily target
the cell membrane. This includes both the outer and inner membranes
of gram-negative bacteria. Intracellular targets are also increasingly re-
ported [�]. The membranes are rather immutable targets as they are
not directly DNA coded. This reduces the probability of one-step resis-
tance, which can be observed for conventional antibiotics. [��] Several
antibiotics are also ineffective against non-dividing bacteria due to their
targets being associated with metabolic processes. This is not the case for
antimicrobial peptides, equally effective in exponential and stationary
metabolic phases. [��]

Furthermore, antibiotic-resistant strains have shown collateral sensitivity
when combined with antimicrobial peptides. This implies that strong
synergies are present in combination, revitalising the antibiotic which
was previously rendered useless. Cross-resistance is rare, supporting the
notion of ’the promise of antimicrobial peptides’. [��]

Figure �.�: Mutation rate for E. coli
cultures treated at MIC�� for four
hours as determined using the Luria-
Delbrück fluctuation test. Conventional
antibiotics (ampicillin, ciprofloxacin, and
kanamycin) significantly increase mu-
tation rates compared to the control.
Adapted from [��]. The article from
which the figure is reproduced is an
open-access article and as such, is dis-
tributed under a CC BY �.� license.

The probability of resistance evolution towards antimicrobial peptides
is significantly smaller than for antibiotics. This has been shown across
a large array of antimicrobial peptides and antibiotics. The evidence
is substantiated by understanding the pharmacodynamics of AMPs,
which confer rapid killing and a narrow mutant selection window. [�,
��] Lastly, antimicrobial peptides have been documented not to alter
the mutation rate. Antibiotics commonly elicit SOS and rpoS responses,
thereby increasing the probability for resistance evolution. [��]

Factors which prevent clinical usage of antimicrobial peptides An-
timicrobial peptides have several single points of failure, notably their
inherent toxicity, lack of stability, sequestration by serum, and cost [��,
��]. Colistin is used as a last-resort treatment as it is potent, despite
its nephrotoxicity. This is a quite common feature for polycations. [��]
Furthermore, a pre-clinical trial of the AMP iseganan has shown that
the mortality rate increased compared with placebo groups [��]. Antimi-
crobial peptides often have limited half-lives in human serum, further
hampering the therapeutic potential. [��] The associated haemolytic
activity of AMPs further restrains the clinical utility [��]. Haemolytic
activity has been shown to be almost indistinguishable from AMP activity
when considering the physicochemical features of haemolytic and non-
haemolytic AMPs [��]. This complicates the design of non-haemolytic
AMPs.

These issues are being addressed by incorporating non-canonical amino
acids, D-isomers confer proteolytic resistance and cyclisation. [��] Design
towards minimising haemolytic activity is has seen success [��, ��–��].

c) Why do methods lack robustness? Group theoretic answers. 

Physicochemical symmetries restrict AI/DL success 
in predicting antimicrobial peptide activity: Breaking 
permutation invariance with geometric deep 
learning. Niklas G. Madsen1,2, Evamaria Petersen1, Peter Fojan1, 

and Carlos G. Acevedo-Rocha2.
Correspondence: nikma@dtu.dk

1Material Science and Engineering Group, Department of Materials and 
Production, Aalborg University, 9000 Aalborg, Denmark

2Computational Protein Engineering, Novo Nordisk Foundation Center for 
Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark 


Antipodal points commute 
with the group action of SO(3)

180∘

Receptive field

Do I look 
okay? 

GVSVAGAKKVKVLFVFPFLF

MIC >256 ug/mL†

FLGVVFKLASKVFPAVFGKV

MIC = 8 ug/mL†

FLGVVFKLASKVFPAVFGKV

GVSVAGAKKVKVLFVFPFLF

[1] Neeloffer Mookherjee et al. ‘Antimicrobial host defence peptides: functions and clinical potential’. In: Nat 
Rev Drug Discov 19.5 (2020),


[2] Christopher Loose et al. ‘A linguistic model for the rational design of antimicrobial peptides’. en. In: Nature 
443.7113 (2006). 


[3] Gainza, P., Sverrisson, F., Monti, F. et al. Deciphering interaction fingerprints from protein molecular 
surfaces using geometric deep learning. Nat Methods 17, 184–192 (2020).


[4] Nathanaël Perraudin et al. ‘DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix 
sampling for cosmological applications’. 


[74] Daniel Veltri, Uday Kamath, and Amarda Shehu. ‘Deep learning improves antimicrobial peptide 
recognition’. In: Bioinformatics 34.16 (Aug. 2018), pp. 2740–2747. doi: 10.1093/bioinformatics/ bty179.  

[76] Haoyi Fu et al. ‘ACEP: improving antimicrobial peptides recognition through automatic feature fusion and 
amino acid embedding’. In: BMC Genomics 21.1 (Aug. 2020) 

Active

Inactive, shuffled

Bijective

(One-to-one and Onto)

Injective

(One-to-one)

Surjective

(Onto)

b) Symmetries of physicochemical representations and their 
implications. 

pI Mw

11.17 2113.62

11.17 2113.62

… …

11.17 2113.62

All  unique permutations in sequence result 
in the same physiocochemical representation. 

1015

20!
5!(2!)3

≈ 1015 . possible 
permutations

a) Surjective, Injective, and Bijective b) Symmetries of Physicochemical representations 
and their implications. 

Bijective

(One-to-one and Onto)

Injective

(One-to-one)

Surjective

(Onto)

pI Mw

11.17 2113.62

11.17 2113.62

… …

11.17 2113.62

All  unique permutations in sequence result in the 
same physiocochemical representation. 

1015

b) Group Theory and Representation 
Degeneracy 

p : seq ℝd

Black Box 
Feature Generator

p1 : seq

Physiocochemical 
Features Uncovered

Amino acid 
composition

a ∈ ℝ20

Linear 
Weights 

w ∈ ℝ20 Physicochemical scalar 

(surjective) 
w⊤ ⋅ a = p1 ∈ ℝ

Amino acid composition treats the 
sequence as an unordered set, thus 
inheriting the permutation group Σn

20!
5!(2!)3 ≈ 1015 . possible 

permutations

a) Surjective, Injective, and Bijective b) Symmetries of Physicochemical representations 
and their implications. 

Bijective

(One-to-one and Onto)

Injective

(One-to-one)

Surjective

(Onto)

pI Mw

11.17 2113.62

11.17 2113.62

… …

11.17 2113.62

All  unique permutations in sequence result in the 
same physiocochemical representation. 

1015

b) Group Theory and Representation 
Degeneracy 

p : seq ℝd

Black Box 
Feature Generator

p1 : seq

Physiocochemical 
Features Uncovered

Amino acid 
composition

a ∈ ℝ20

Linear 
Weights 

w ∈ ℝ20 Physicochemical scalar 

(surjective) 
w⊤ ⋅ a = p1 ∈ ℝ

Amino acid composition treats the 
sequence as an unordered set, thus 
inheriting the permutation group Σn

20!
5!(2!)3 ≈ 1015 . possible 

permutations

a) Surjective, Injective, and Bijective b) Symmetries of Physicochemical representations 
and their implications. 

Bijective

(One-to-one and Onto)

Injective

(One-to-one)

Surjective

(Onto)

pI Mw

11.17 2113.62

11.17 2113.62

… …

11.17 2113.62

All  unique permutations in sequence result in the 
same physiocochemical representation. 

1015

b) Group Theory and Representation 
Degeneracy 

p : seq ℝd

Black Box 
Feature Generator

p1 : seq

Physiocochemical 
Features Uncovered

Amino acid 
composition

a ∈ ℝ20

Linear 
Weights 

w ∈ ℝ20 Physicochemical scalar 

(surjective) 
w⊤ ⋅ a = p1 ∈ ℝ

Amino acid composition treats the 
sequence as an unordered set, thus 
inheriting the permutation group Σn

20!
5!(2!)3 ≈ 1015 . possible 

permutations
a) Surjective, Injective, and Bijective b) Symmetries of Physicochemical representations 

and their implications. 

Bijective

(One-to-one and Onto)

Injective

(One-to-one)

Surjective

(Onto)

pI Mw

11.17 2113.62

11.17 2113.62

… …

11.17 2113.62

All  unique permutations in sequence result in the 
same physiocochemical representation. 

1015

b) Group Theory and Representation 
Degeneracy 

p : seq ℝd

Black Box 
Feature Generator

p1 : seq

Physiocochemical 
Features Uncovered

Amino acid 
composition

a ∈ ℝ20

Linear 
Weights 

w ∈ ℝ20 Physicochemical scalar 

(surjective) 
w⊤ ⋅ a = p1 ∈ ℝ

Amino acid composition treats the 
sequence as an unordered set, thus 
inheriting the permutation group Σn

20!
5!(2!)3 ≈ 1015 . possible 

permutations

M
Sc

. T
he

si
s 

Ti
m

el
in

e

a) Observation: All published methods seem to 
fail at shuffled peptides.
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a) Homeomorphisms to enable global surface representations 
with geometric deep learning.

b)  representation has a brilliant symmetry for antimicrobial 
peptides. 

𝒮2

a) The beginnings of QSAR, but lacking validation due to 
failed chemical synthesis of peptide.

a) Conclusion. 

The need for introspection for Robust AI in Biology:

i) Which symmetries are your methods blind to?

ii) How could you test this? (adversarial)

iii) Is the blind spot, due to symmetry, acceptable for the use case?


Results here:

1) Sequence (linguistic) and structure (geometric) form 
well-complimented representations.

2) Syntactically ’correct’ AMP sequences grow sub-
exponentially in sequence space rather than as .

3) Global surface motif recognition with geometric 
deep learning and antipodal symmetries.

20n

a) Introduction: Antimicrobial Peptides (AMPs) as a 
necessary tool to battle Antimicrobial Resistance.

� � Introduction

colonisation with a broad spectrum of AMPs for specifically targeted
killing. [��] Their diversity is not a redundancy, but a suite likely specif-
ically tuned to fight microorganisms in the host’s native environment.
[�]

�.�.� The Design and Recognition of Antimicrobial
Peptides

The illustrative change in perspectives on AMPs has not yet been reflected
in the design and recognition of AMPs. It remains the focus to identify
singular sequences for the broad-spectrum killing of microorganisms.
However, this is not to say that remarkable advances have not occurred.
A quick note: design here refers to the creation of novel AMPs either
by divergence from known sequences or by elucidating novel motifs,
whereas recognition is the task of classifying whether a given sequence
is active. While not strictly orthogonal tasks, they are often treated as
such in the literature.

The degree to which the rational design of AMPs is understood is well
reflected by the continued prevalence of designing hybrids from known
and well-behaved AMPs. A few examples include a melittin-cecropin
hybrid (����), magainin-LL�� hybrid (����), melittin-cecropin-magainin-
� hybrid (����), and cathelicidin-aurin hybrid (����). These hybrids
have quantitative advantages, and the sequence-activity relationship is
understood, resulting in nanomolar minimum inhibitory concentrations
against clinically relevant targets (Psudomonas aeruginosa, Acinetobacter
baumannii). [��–��] These ’cut-and-join’ strategies may be insufficient
[�], and sometimes have unexpected consequences (a complete loss in
activity or high haemolytic activity). [��] Perhaps striking is that all the
examples use helical wheels to improve activity rationally. In the case
of �-helical peptides, the hallmark of design is the associated property:
facial amphiphilicity.
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Magainin II: GIGKFLH…

Figure �.�: Helical wheel representation
of the first seven residues of Magainin II.
Facial amphiphilicity is well illustrated
by the segregation of polar and apolar
residues.

�-helical AMPs are well studied and display the property of facial am-
phiphilicity. This implies the frequent rational design of this class of
AMPs. Apolar groups insert themselves into the phospholipid bilayers,
whereas polar and charged groups may interact with the phospholipid
heads. The structural segregation is well described by Eisenberg’s hy-
drophobic moment, which has been able to discriminate AMPs from
helices in globular proteins. [��] The selectivity of AMPs towards bac-
terial membranes has been ascribed to the differential affinity towards
anionic lipids over the primarily zwitterionic composition of mammalian
membranes. [��] Structure has been linked with function by D-isomer
incorporation, disrupting an �-helix. [��] Increasing amphiphilicity is
not enough either, and a move towards incorporating imperfect am-
phiphilicity has emerged. Imperfect amphiphilicity takes hydrophobic
sub-moments into account, and results in active AMPs The hydrophobic
sub-moments are a reinterpretation of the sum hydrophobic moment as
defined by Eisenberg. [��] The nuances of the sequence-structure-function
relationship is not viewed as a solved puzzle. [��]

Far from all AMPs are �-helical upon binding to bacterial membranes.
Various classes of AMPs have been identified, including proline-rich,

�.� Rethinking AMPs ��

Table �.�: AMPs frequently have intracellular targets, a few examples of which are shown in the table. The table is adapted from [�].
Sequences around twenty in length were selected to illustrate the diverse modes of action accessible with twenty residues.

AMP Name Sequence Mode(s) of Action

Buforin II TRSSRAGLOFPVGRVHRLLRK Inhibits DNA, inhibits RNA
Microcin J�� VGIGTPIFSYGGGAGHVPEYF Inhibits RNA polymerase
Pyrrhocoricin VDKGSYLPRPTPPRPIYNRN Inhibits DnaK and GroEL, binds

LPS
Mersacidin CTETLPGGGGVCTLTSECIC Inhibits lipid II in peptidoglycan

biosynthesis
Magainin I GIGKFLHSAGKFGKAFVGEIMKS Inhibits energy metabolism

proteins
Melittin GIGAVLKVLTTGLPALISWIKRKRQQ Pore-formation and membrane

permeabilisation

�AB = 1.0

�AMP = 5.0�min

�max

0

�max,S
�max,R

MSWc

0

�min

MIC

log10(a)

log10(a)

a)

b)

Figure �.�: Pharmacodynamic compari-
son of AMPs and antibiotics and the mu-
tant selection window (MSW). (a) The
pharmacodynamic function (Equation
�.�) for an antibiotic (blue) and AMP
(red), which differ only in the value of
the Hill coefficient (�). (b) The mutant
selection window as a result of increased
MIC for the resistant phenotype (R) com-
pared with the susceptible phenotype (S)
and the fitness cost incurred (Equation
�.�). 0 is the concentration of the antibi-
otic or AMP. Adapted from [��]

whereas the outer membrane is largely impermeable. This is with the
exception of �-barrel porins, which selectively allow for the passive
diffusion of charged hydrophilic drugs. The porins have a molecular
weight cut-off at ��� Da, restricting the set of molecules which can enter.
[��, ��]

These rules are by no means absolute. The proton motive force has been
shown to drive permeation of charged drugs across the inner membrane
(despite the rate being ����-fold slower than uncharged molecules). [��]
A notable example is Microcin J��, which despite its molecular weight
(���� Da), inhibits RNA polymerase as its mode of action. Uptake is
modulated by FhuA, an outer membrane transport protein, and various
inner membrane proteins [���]. Recent advances have also enabled the
rational design of peptides which passively permeate membranes and
are beyond Lipinki’s rule-of-five [��].

�.� Rethinking AMPs

�.�.� Resistance Evolution and the Hill Function

The rethinking of AMPs has also illuminated the fact that resistance
evolution towards AMPs can occur, it is just much less likely. This has
been attributed to the pharmacodynamics of AMPs, which leads to a
significantly narrower mutant selection window (MSW). [��] The hill
function relates the concentration of an antimicrobial (0) with the killing
rate ⇠

⇠(0) = ⇢<0G

(0/⇢⇠50)�
1 + (0/⇢⇠50)�

, (�.�)

where ⇠(0) is the killing rate at a concentration (0), ⇢<0G is the maximal
killing rate for an AMP, ⇢⇠50 is the concentration at which ⇠(0) reaches
half of ⇢<0G , and � is the Hill coefficient. [���] This can be rewritten in
terms of bacterial growth rate #(0) as (See A.� for a full derivation):

#(0) = #<0G �
(#<0G � #<8=) · (0/I"�⇠)�

(0/I"�⇠)� � #<8=

#<0G

(�.�)

i) AMPs do not significantly alter the mutation rate. 
(emergence of resistance)


ii) AMPs target the membrane (primarily), which is less prone 
to resistance.


iii) AMPs are cationic and structurally amphiphilic.

iv) Canonical AMPs are natural and everywhere! Over 40 are 

expressed in your mouth [1]. They are the platform which 
organisms use for host-defense.


v) AMPs are currently last-resort drugs against antibiotic 
resistance microbes. 


vi) Discovering new AMPs is crucial 

a) Observation: using State-of-the-art methods results 
in a zero-success rate in vitro….

b) Attempt: Trying to understand the 
impact of descriptor on prediction 

accuracy?

�.� Thoughts about Symmetry and Sequence Space ��

Table �.�: Comparison of state-of-the-art methods for the recognition of AMPs. Acronyms: support vector machine (SVM), artificial
neural network (ANN), discriminate analysis (DA), random forest (RF), fuzzy K-nearest neighbor (FKNN), convolutional neural network
(CNN), long short-term memory (LSTM). Values obtained from [��] Table � which were based on the Veltri et al. benchmark [��]. The
largest value of each column is marked in bold.

State-of-the-art Descriptor (=(%) (?(%) �⇠⇠(%) "⇠⇠ �*⇠(%)

AntiBP� (SVM) Amino acid composition ��.�� ��.�� ��.�� �.���� ��.��
CAMPr�-ANN Unclear: "sixty-four best peptide descriptors" ��.�� ��.�� ��.�� �.���� ��.��
CAMPr�-DA Unclear: "sixty-four best peptide descriptors" ��.�� ��.�� ��.�� �.���� ��.��
CAMPr�-RF Unclear: "sixty-four best peptide descriptors" ��.�� ��.�� ��.�� �.���� ��.��
CAMPr�-SVM Unclear: "sixty-four best peptide descriptors" ��.�� ��.�� ��.�� �.���� ��.��
iAMP-�L (FKNN) Pseudo amino acid composition &

physiocochemical
��.�� ��.�� ��.�� �.���� ��.��

iAMPpred (SVM) Pseudo amino acid composition &
physiocochemical structural propensity

��.�� ��.�� ��.�� �.���� ��.��

gkmSVM Gapped k-mer amino acid composition ��.�� ��.�� ��.�� �.���� ��.��
AMPScanner (CNN + LSTM) Amino acid encoding ��.�� ��.�� ��.�� �.���� ��.��
ACEP (Three-track CNN + LSTM + Attention) Amino acid composition, amino acid one-hot

encoding, position-specific scoring matrices
(PSSM)

��.�� ��.�� ��.�� �.���� ��.��

Our Methods (Preliminary)

SVM (linear kernel) Amino acid composition ��.�� ��.�� ��.�� �.���� ��.��
�-gap dipeptide composition ��.�� ��.�� ��.�� �.���� ��.��
�-gap dipeptide composition ��.�� ��.�� ��.�� �.���� ��.��
�-gap dipeptide composition ��.�� ��.�� ��.�� �.���� ��.��

Tripeptide composition ��.�� ��� ��.�� �.���� ��.��
Physiocochemical ��.�� ��.�� ��.�� �.���� ��.��

MLP (ReLU, � hidden layers, Adam) Amino acid composition ��.�� ��.�� ��.�� �.���� ��.��
�-gap dipeptide composition ��.�� ��.�� ��.�� �.���� ��.��
�-gap dipeptide composition ��.�� ��.�� ��.�� �.���� ��.��
�-gap dipeptide composition ��.�� ��.�� ��.�� �.���� ��.��

Tripeptide composition ��.�� ��.�� ��.�� �.���� ��.��
Physiocochemical ��.�� ��.�� ��.�� �.���� ��.��

Huggingface (RF) Concatenated compositional features (AAC,
�-gap DPC, PCP)

��.�� ��.�� ��.�� �.���� ��.��

Figure �.�: ��-Fold cross validation with
a SVM (linear kernel) to determine sensi-
tivity of the train/test sets. The average
value is given and the uncertainty calcu-
lated as two standard deviations 2�.

Each row represents the twenty canonical amino acids. Then, common
descriptors calculate:

38 =
X
9

G89 (�.�)

which ’counts’ the number of each amino acids in row 8. The entries are
weighted and combined linearly as:

⌘ =
266664
21
..

220

377775
·
266664
31
..

320

377775
= 2131 + .. + 220320 (�.�)

This general formalism generates charge, hydrophobicity, TM-propensity,
�-helix propensity, and aromaticity just to name a few. Each descriptor
is generated by changing the coefficient matrix. It is perhaps not so
surprising that these methods fair approximately equally. This naturally
leads to the question of orthogonality. Are more descriptors better? or
do we just need an orthonormal basis. One such example is amino acid
composition for which the orthonormal basis is trivial:

26666664

1
0
..

0

37777775
,

26666664

0
1
..

0

37777775
, ..,

26666664

0
0
..

1

37777775
(�.�)

Tests (internal)

i) SOTA methods have flatlined 
and it is often unclear how 
sequence is encoded. Badly 
reported methods.


ii) Why does composition alone 
fare so well?


iii) Why did none of the predicted 
peptides work if test metrics are 
so high?
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a) Protein language models break 
permutation invariance.
i) Positional encoding! 

ii) Attention looks 

dramatically different for a 
shuffled-inactive vs. active 
AMPs.


iii) Perplexity indicates the 
difference also: 97.9 < 
13615


iv) As is done routinely for all 
other protein related tasks 
now, language model 
embeddings are powerful

�.� Cyclic Construct ��

Amide cyclisationPredicted H-bonds
2x

G N W V R G A P G N P W V P A G

Figure �.��: Linear representation of
fixbb�� showing intramolecular hydro-
gen bonds and amide cyclisation. The
Kekulé form of the molecular structure
is visualised below.

Synthesis followed the method in Section �.�.�, and resulted in a crude-
product yield of ��.� mg. The RP-HPLC chromatogram shows multiple
peaks (data not shown), indicative of a problematic synthesis. Only one
eluant shows a strong tryptophan absorption signal.

Synthesis was verified with LC-MS: an extracted ion chromatogram
for the eluant of the major peak contributing to the absorbance at ���
nm (likely tryptophan) was prepared. This showed a clear sodium
adduct allowing for the verification of the doubly charged molecular ion
[M+�H]+2. The experimentally obtained monoisotopic mass is ����.�����
Da, whereas the theoretical monoisotopic mass for the cyclic construct is
����.�����. This is discouraging and indicates something awry. The mass
difference (���.����� Da) could be narrowed down to lacking deprotection
of arginine (Pbf protection group ���.����� Da), leaving ��.�����. As
the Pbf protection group mimics the �-Carboxybenzenesulfonamide
resin in this functional moiety exactly, it is likely that the sulfonamide
was also activated by iodoacetonitrile if soft-cleavage did not remove
the protection group. Whether this is a reasonable assumption will be
discussed later. The isotope pattern supports the case that sulfur remains
in the molecular ion, which would lie in accordance with a remaining Pbf
group also ((M+�) - (M+�) = �.���� < �). The isotope pattern also supports
a Pbf protection group as there is a step up in the relative abundance of
the M+� isotope which would only occur if there are sufficiently many
carbons (The desired product has a sum formulae of C75H105N23O18
whereas the observed product is likely C91H126N24O21S). That being
said, many peaks were identified and indicated mass differences exactly
matching the amino acid mass of glycine, alanine, proline, or asparagine
upon inspection. This indicates that synthesis was troublesome and that
amino acid deletions occurred quite frequently.

Molecular simulations show 
high-affinity binding.

Figure �.��: Molecular simulation frame
of fixbb�� after �� ns. The membrane
system mimics bacterial composition
(��% DOPE, ��% POPG, �% CL). Deep
burial of fixbb�� occurs, which perturbs
the lipid packing. Hydrogen bonds are
formed both intramolecularly and to the
phospholipid head groups. The trypto-
phan residues act as a clamp on a DOPG
lipid. Burial is thus both entropically and
enthalpically favourable.

1) Method can predict activity 
reasonably.


2) Experimental validation of 
new global-surface method 
hindered by chemical 
synthesis. 


3) But, MD simulations indicate 
strong membrane affinity.

�.� Structural Investigation of AMPs ��

Table �.�: Helix capping motifs in common �-helical AMPs. These have an NMR-resolved structure, which allows for an analysis of
intra-chain motifs.

Melittin LL-�� Brevinin-�BYa

Sequence GIGAVLKVLTTGLPALISWIKRKRQQ LLGDFFRKSKEKIGKEFKRIVQR FLPILASLAAKFGPKLFCLVTKKC
N-terminal Motif G (high propensity) Hydrophobic staple P (high propensity)
C-terminal Motif KRQ (high propensity) QR (high propensity) KK (high propensity)
Stabilising pair-wise I�L�, V�L�, W��R�� E��K��,K��E��,E��R�� F�L�,I�L�, F��L��
Notes P�� causes kink L�F�F� form hydrophobic patch S-S bond at C-terminus
PDB ID �DST �LMF �G�I

Figure �.�: Structural prediction accu-
racy of Alphafold� for Ocellatin (PDB ID:
�U�Q). All-atom RMSD = �.� Å, back-
bone RMSD = �.� Å. Side chain rotamers
are in most cases correctly predicted. Car-
toon of NMR structure (grey) and of pre-
dicted structure (red).

of the amino acid order which constitutes this sequence would almost
certainly break these features, which are observed at a structural level.

Helix capping motifs 
LL-37 
PDB ID: 2LMF 
N-terminal (left) 
C-terminal (right) 

Hydrophobic staple

KD ion-pair

QR (high propensity)

ER ion-pair

Hydrophobic patch

Figure �.�: Helix capping motifs anno-
tated for LL-��. PDB ID: �LMF, which is
technically a truncation of LL-��.

�.�.� Structural Prediction

The absence of structural data for most AMPs prevents an analysis of
structural motifs. Most folding methodologies cannot directly account
for the membrane interaction in the structural prediction. Thus structural
data was prepared for all peptides in the Veltri et al. benchmark [��]. Both
ESM fold and Alphafold� show Ångstrøm level RMSD when compared
with solved AMP structures (See Figure B.�, B.�). This indicates that
while not optimised for membrane-induced folding, the methodologies
perform reasonably at doing so. Even side-chain rotamers are predicted
correctly for structures with defined �-helices (See Figure �.�). Of note is
that ESM fold is orders of magnitude faster than Alphafold�, although
less accurate on average. The structural prediction quality of the ESM
fold is lower, as no energy minimisation is carried out once the backbone
is predicted. This implies that dihedral angles in a Ramachandran plot
show a non-zero distribution in disallowed regions (Figure B.�). There,
however, remains a question as to what ’accurate enough’ is, as peptides
remain flexible and dynamic once bound to the membrane.

Structural data was prepared for ���� peptides in the Veltri et al. data set
using ESM fold due to its speed. A subset is illustrated in Figure �.��. For
���� peptides with annotated MIC values, which was curated manually,
the structural prediction was carried out with Alphafold� owing to its
superior prediction quality, although at an increased computational cost.
All data has been released here.

Although unsurprising, just topology cannot differentiate AMPs from
DECOYs. This is to say that combinations of secondary structure ele-
ments and their quantification cannot discriminate the two. This itself
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i) Simply: biophysics. A 
permutation in order changes 
structure. (the obvious)


ii) More subtly, permutations 
disrupt helix capping motifs 
that thermodynamically favour 
adsorption to the membrane. 


iii) Permutations in order change 
the facial amphiphilicity

a) What explains why AMPs are not 
permutation invariant, unlike 

physicochemical descriptors 
commonly used.

i) Most features are surjective, 
thus degeneracy arises.


ii) Amino acid composition is an 
orthogonal basis set, from 
which most physiocochemical 
descriptors can be derived.


iii) An MLP can provably learn all 
these descriptors, one-per-
neuron.

> 256 ug/mL

8 ug/mL

Extra: Symmetric group of the set is LARGE and 
thus only one embedding for all is problematic. 

Extra: Counter example which the method 
cannot reliably predict due to genus of surface.

Cyclic: RHQPQRKQKKPQQRQK

Genus: 1

Results �
�.� Initial Experimental Results

Three peptides were initially experimentally investigated, and a summary
of the results obtained is provided in Table �.�. CFT_cons is a consensus
sequence which acted as a baseline for subsequent design and has a
MIC at ��.� �M toward E. coli. Salt-inactivation was observed for the
peptide (four-fold increase in MIC upon �:� dilution of broth in �⇥ PBS).
Killing occurs rapidly, with no detectable colony forming units (CFU)
after �� minutes at �⇥ MIC. Synergy was briefly investigated, but no
measurable synergy of CFT_cons with streptomycin or ampicillin was
found. The inoculum effect for CFT_cons is demonstrated in Figure
�.�. Using the thermodynamic approach presented in [���], one can
derive thermodynamic parameters from the characteristic inoculum
curve (Figure �.�). Clearly, the cell density, expressed in CFU/mL, affects
the MIC significantly for the antimicrobial peptides and less so for
conventional antibiotics. The cell density at which half of the AMP
molecules are bound occurs at 1.4 · 106 CFU/mL, and the minimum
number of molecules bound per cell for cell death is estimated to be
12 · 109.

The second peptide investigated, ’TLFKRIKGQRVCVWVHTKSV’ with
the acronym ’C�K’ was designed using state-of-the-art methods. An
evolutionary algorithm is used to diversify a population away from
the aforementioned consensus sequence. Then generated peptides are
cross-filtered for haemolytic activity and AMP activity in a computational
manner. The design was synthesised and the MIC was assessed to be >
��� �M, although occasionally one well would show growth inhibition at
��� �M. Nevertheless, the sequence does not fulfil AMP activity criteria.
In an attempt to understand this, it was discovered that any generated
permutation of the order of the sequence would still result in an AMP
classification.

Given the rationale in Section �.�.�, an old design by the author was
pulled out of the freezer, as it is both cationic and a self-assembling
peptide. This self-assembling peptide will be referred to as ’KAKCP’. The
peptide forms a supramolecular hydrogel (Figure �.�c, left) but had no
demonstrable antimicrobial activity in a MIC assay (up to � mM was

Table �.�: Overview of investigated peptides and summary of results obtained.

Acronym Sequence Discovery Method Results Summary

CFT_cons FLGKVLKKASKVVKAVFKKV Consensus sequence as a
baseline

non-haemolytic, AMP (��.�
�M).

C�K TLFKRIKGQRVCVWVHTKSV Random walk, cross-
filtering against haemolysis

non-haemolytic, non-AMP.

KAKCP KAKFFFACPGCAFFFKAK Rationally designed
cationic self-assembling
peptide from an old project

strongly haemolytic, N/A.

…. 

…

…


Pulling everything out of the peptide freezer 
and characterising the minimum inhibitory 
concentration (MIC, lower is better) 
comparing with predictions from published 
methods. I wanted to do an experimental 
MSc. but realised this made little sense as 
the success rate was zero for me. 

Finding purposely shuffled sequences in literature [2]

Extra: Haemolysis is a critical problem of AMPs, we found 
that the lyticity index sets a lower bound for the EC50

Building on available surface method MaSIF [3] 
for deep learning on surface representations, 
but extend upon it to avoid random sampling of 
surface.

Method developed can accurately learn global surface motifs to classify 
antimicrobial peptides, thus integrating structure. (Using a spherical CNN [4])

i) Most 
physicochemical 
features are global 
sequence averages 
and thus many 
sequences encode 
the same feature.


ii) Proposition: a ML/
DL framework 
based on these 
cannot possibly 
learn to discriminate 
permutations. 

4 2

external data. Illustration is a play on symmetry and 
representation of mirrors, thus mimicking the problem of 
determining which sequence permutation ‘looks okay’.
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