Physicochemical symmetries restrict AI/DL success in predicting antimicrobial peptide activity: Breaking permutation invariance with geometric deep

AALBORG UNIVERSITY

learning.

Niklas G. Madsen^{1,2}, Evamaria Petersen¹, Peter Fojan¹, and Carlos G. Acevedo-Rocha².

Correspondence: <u>nikma@dtu.dk</u>

¹Material Science and Engineering Group, Department of Materials and Production, Aalborg University, 9000 Aalborg, Denmark ²Computational Protein Engineering, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract (short):

Antimicrobial peptides (AMPs) remain a staple in last-resort treatment against antibiotic resistant organisms, yet state-of-the-art computational methods result in low success rates in vivo. We computationally investigate which numerical representation of amino acid sequences correlate with antimicrobial activity. It is shown that state-ofthe-art methods can not discriminate a sequence from its shuffled permutation. Naturally, a shuffled amino acid sequence leads to differential activity in vivo. This failure mode is necessarily the case, as most physicochemical descriptors are permutation invariant, making the task of classifying shuffled sequences impossible. We stress the importance of careful embeddings and their associated symmetries when using AI/DL for biological tasks. We develop a geometric deep learning method to overcome permutation invariance and predict activity from sequence.

a) Introduction: Antimicrobial Peptides (AMPs) as a necessary tool to battle Antimicrobial Resistance.

- AMPs do not significantly alter the mutation rate. (emergence of resistance)
- AMPs target the membrane (primarily), which is less prone to resistance.
- iii) AMPs are cationic and structurally amphiphilic.
- Canonical AMPs are natural and everywhere! Over 40 are iv) expressed in your mouth [1]. They are the platform which organisms use for host-defense.
- AMPs are currently last-resort drugs against antibiotic resistance microbes.
- Discovering new AMPs is crucial vi)

Table 2.2: AMPs frequently have intracellular targets, a few examples of which are shown in the table. The table is adapted from [2]. Sequences around twenty in length were selected to illustrate the diverse modes of action accessible with twenty residues.

G	AMP Name	Sequence	Mode(s) of Action
	Buforin II	TRSSRAGLOFPVGRVHRLLRK	Inhibits DNA, inhibits RNA
	Microcin J25	VGIGTPIFSYGGGAGHVPEYF	Inhibits RNA polymerase
	Pyrrhocoricin	VDKGSYLPRPTPPRPIYNRN	Inhibits DnaK and GroEL, binds LPS
GH	Mersacidin	CTETLPGGGGVCTLTSECIC	Inhibits lipid II in peptidoglycan biosynthesis
Magainin II: GIGKFLH	Magainin I	GIGKFLHSAGKFGKAFVGEIMKS	Inhibits energy metabolism
Figure 1.4: Helical wheel representation of the first seven residues of Magainin II. Facial amphiphilicity is well illustrated	Melittin	GIGAVLKVLTTGLPALISWIKRKRQQ	proteins Pore-formation and membrane permeabilisation

GVSVAGAKKVKVLFVFPFLF $MIC > 256 \, ug/mL^{\dagger}$

a) (

fail

DKav'

1: Mutation rate for E. coli treated at MIC50 for fou

rom [23]. The article from

-access article and as such, is dis-

		_	
Table 5.1: Overview	of investigated peptid	es and summary o	f results obtained.

Acronym	Sequence	Discovery Method	Results Summary
CFT_cons	FLGKVLKKASKVVKAVFKKV	Consensus sequence as a baseline	non-haemolytic, AMP (28.8 µM).
C4K	TLFKRIKGQRVCVWVHTKSV	Random walk, cross- filtering against haemolysis	non-haemolytic, non-AMP.
КАКСР	KAKFFFACPGCAFFFKAK	Rationally designed cationic self-assembling peptide from an old project	strongly haemolytic, N/A.
		•••	

a) Observation: using State-of-the-art methods results in a zero-success rate in vitro....

> Pulling everything out of the peptide freezer and characterising the minimum inhibitory concentration (MIC, lower is better) comparing with predictions from published methods. I wanted to do an experimental MSc. but realised this made little sense as the success rate was zero for me.

Table 6.1: Comparison of state-of-the-art methods for the recognition of AMPs. Acronyms: support vector machine (SVM), artificial neural network (ANN), discriminate analysis (DA), random forest (RF), fuzzy K-nearest neighbor (FKNN), convolutional neural network (CNN), long short-term memory (LSTM). Values obtained from [76] Table 2 which were based on the Veltri et al. benchmark [74]. The largest value of each column is marked in bold.

impact of descriptor on prediction accuracy?

b) Attempt: Trying to understand the

SOTA methods have flatlined

sequence is encoded. Badly

Why does composition alone

Why did none of the predicted

peptides work if test metrics are

and it is often unclear how

reported methods.

fare so well?

so high?

State-of-the-art	Descriptor	Sn(%)	Sp(%)	ACC(%) MCC		AUC(%)	
AntiBP2 (SVM)	Amino acid composition	87.91	90.80	89.37	0.7876	89.36	
CAMPr3-ANN	Unclear: "sixty-four best peptide descriptors"	83.00	85.11	84.05	0.6813	84.05	
CAMPr3-DA	Unclear: "sixty-four best peptide descriptors"	87.07	80.75	83.91	0.6797	89.97	
CAMPr3-RF	Unclear: "sixty-four best peptide descriptors"	92.69	82.44	87.57	0.7553	93.63	:\
CAMPr3-SVM	Unclear: "sixty-four best peptide descriptors"	88.62	80.47	84.55	0.6933	90.62	- I)
iAMP-2L (FKNN)	Pseudo amino acid composition &	83.99	85.86	84.90	0.6983	84.90	
	physiocochemical						
iAMPpred (SVM)	Pseudo amino acid composition &	89.33	87.22	88.27	0.7656	94.44	
-	physiocochemical structural propensity						
gkmSVM	Gapped k-mer amino acid composition	88.34	90.59	89.46	0.7895	94.98	
AMPScanner (CNN + LSTM)	Amino acid encoding	89.88	92.69	91.29	0.8261	96.30	
ACEP (Three-track CNN + LSTM + Attention)	Amino acid composition, amino acid one-hot	92.41	93.67	93.04	0.8610	97.78	ii)
	encoding, position-specific scoring matrices						,
	(PSSM)						
Tests (internal)							
SVM (linear kernel)	Amino acid composition	87.57	88.14	87.85	0.7571	94.95	İİİ
	1-gap dipeptide composition	82.77	90.96	86.86	0.7398	94.32	
	3-gap dipeptide composition	83.90	93.22	88.56	0.7746	95.06	
	4-gap dipeptide composition	82.77	93.50	88.14	0.7671	95.06	
	Tripeptide composition	17.80	100	58.90	0.3125	91.95	
	Physiocochemical	87.29	88.14	87.71	0.7543	58.90	
		00.00	05 00	00.07	0 2021		
MLP (KeLU, 4 hidden layers, Adam)	Amino acid composition	92.66	85.88	89.27	0.7871	95.80	
	1-gap dipeptide composition	84.46	90.68	87.57	0.7529	93.69	
	3-gap dipeptide composition	88.98	83.62	86.30	0.7270	94.32	
	4-gap dipeptide composition	91.24	86.16	88.70	0.7750	93.95	
	Tripeptide composition	83.05	83.33	83.19	0.6638	88.03	
	Physiocochemical	87.29	88.42	87.85	0.7571	95.18	
Huggingface (KF)	Concatenated compositional features (AAC,	88.98	90.40	89.69	0.7939	89.69	
	4-gap DPC, PCP)						

a) What explains why AMPs are not permutation invariant, unlike physicochemical descriptors

Table 5.4: Helix capping motifs in common α -helical AMPs. These have an NMR-resolved structure, which allows for an analysis of intra-chain motifs.

Melittin	LL-37	Brevinin-1BYa
----------	-------	---------------

		permutations.	G	GFVSKPAV	VSVPIF	LRIVK
		Why do pothods lack r	S S	ISFVPVRG	PLGKVI	FVKAV 11.
•			R	ISFPVAVV	SPFVKI	VpGILK CMw
		Most features are surjed	Αινκνs ctive,	VGIGSPPV	FKRVF	
		thus degeneracy arises.	VALPVV	PIFVGFKS	IVKSG	11.17 2113.62
	ii)	Amino acid compositior	ть і в 2819 к Р	AVVSVPIF	LRIVK	
		orthogonal basis set, fro	JM3 FVPV	RGPLGKVI	FVKAV	
)		which most physiococh	emical	VVSPEVKL	VGLKGch	entical/scalar13.6
		descriptors can be deriv	ved.	V V S I I V K I	ve)	$\mathbf{w}^{\top} \cdot \mathbf{a} = p_1 \in \mathbb{R}$
	iii)	An MLP can provably le	arn all			$\mathbf{w} \cdot \mathbf{a} - p_1 \subset \mathbf{w}$
		these descriptors, one-	per-	Physiocochemical Features Uncovered	Amino acid com sequence as an	position treats the unordered set, thu

Method		Descriptor	ACC(%)			/EDEI E		
MLP (ReLU, 4 hidden la Huggingface (RF) AMPScanner V2.0 (CN)	ayers, Adam) fea N + LSTM)	Amino acid composition Concatenated compositional atures (AAC, 4-gap DPC, PCP) Amino acid encoding	53.12 50. 46.87					
				FLGVVFR	LASKVERA	ν Γ α) Ψ _{max}		
b) Symmetries of physico implications.	ochemical re	epresentations and th	heir			0	$\kappa_{AB} = MIC$	1.0
Most physicochemical footuroo are global	All 10^{15} u in the same	nique permutations	s in sequ al repre	uence result sentation.	pl	ψ_{min} b)	$\kappa_{AMP} = \log_{10}(a)$	5.0
sequence averages and thus many	LAIV	K V S V G I G S	PPV	FKRV	F 11.17 G 11.17	$\Psi_{max,S}$ $\psi_{max,R}$ c $\psi_{max,R}$ 0	MSW	
the same feature. Proposition: a ML/	G G F V	$20! = 10^{15}$ pos $5!(2!)^3 \approx 10^{15}$ pos per	ssible mutatio	ns TV	10 ¹⁵ K	Ψ _{min}	log ₁₀ (<i>a</i>)	44
based on these cannot possibly	SISFC	PVRGOLG V SVGIGSPPVFK		^{pl} F V ^M K 1.17 2113.62	R V A L P V V P G G F V S K P A	IFVGF	(SIVKSG IFLRIVK	11
permutations.	G G F V S S I S F V	, , , , , , , , , , , , , , , , , , ,	KSG, P IVK <u>pl</u> 11.17 KAV 11.17	Mw 2113.62	SISFVPVR RISFPVAV	G P L G K V V S P F V K	/ I F V K A V K I V G L K G	11
	onthe	VAL VIII		2113.02				

