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Abstract (short):

Antimicrobial peptides (AMPs) remain a staple in last-resort treatment against
antibiotic resistant organisms, yet state-of-the-art computational methods result in low
success rates in vivo. We computationally investigate which numerical representation
of amino acid sequences correlate with antimicrobial activity. It is shown that state-of-
the-art methods can not discriminate a sequence from its shuffled permutation.
Naturally, a shuffled amino acid sequence leads to differential activity in vivo. This
faillure mode Is necessarly the case, as most physicochemical descriptors are
permutation invarnant, making the task of classifying shuffled sequences impossible.
We stress the importance of careful embeddings and their associated symmetries
when using Al/DL for biological tasks. We develop a geometric deep learning method

learning.
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to overcome permutation invariance and predict activity from sequence.

Table 5.1: Overview of investigated peptides and summary of results obtained.
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a) Introduction: Antimicrobial Peptides (AMPs) as a
necessary tool to battle Antimicrobial Resistance.

)  AMPs do not significantly alter the mutation rate.
(emergence of resistance)

i)  AMPs target the membrane (primarily), which is less prone
to resistance.

VRS IRE iii)  AMPs are cationic and structurally amphiphilic.
w2 1V) - Canonical AMPs are natural and everywhere! Over 40 are
R expressed in your mouth [1]. They are the platform which
o o o ot sl organisms use for host-defense.

Adapted from [23]. The article from
which the figure is reproduced is an

e eni i V) AMPS are currently last-resort drugs against antibiotic
resistance microbes.
vi) Discovering new AMPs is crucial

Table 2.2: AMPs frequently have intracellular targets, a few examples of which are shown in the table. The table is adapted from [2].
Sequences around twenty in length were selected to illustrate the diverse modes of action accessible with twenty residues.
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AMP Name Sequence Mode(s) of Action
Buforin II TRSSRAGLOFPVGRVHRLLRK Inhibits DNA, inhibits RNA
Microcin J25 VGIGTPIFSYGGGAGHVPEYF Inhibits RNA polymerase
G VS VA G A //< //<\///<\/L H//C P/C L /C Pyrrhocoricin VDKGSYLPRPTPPRPIYNRN Inhibits DnaK and GroEL, binds
LPS
.}. Mersacidin CTETLPGGGGVCTLTSECIC Inhibits lipid II in peptidoglycan
M/C >2 56 ug/mL Magainin Il: GIGKFLH... biosyntheSis
Magainin I GIGKFLHSAGKFGKAFVGEIMKS Inhibits energy metabolism
Fi s : proteins
igure 1.4: Helical wheel representation L .
of the first seven residues of Magainin II. Melittin GIGAVLKVLTTGLPALISWIKRKRQQ Pore-formation and membrane
Facial amphiphilicity is well illustrated perme abilisation

a) Observation: using State-of-the-art methods results

Acronym  Sequence

Discovery Method

Results Summary

CFT_cons FLGKVLKKASKVVKAVFKKV
C4K TLFKRIKGQRVCVWVHTKSV

KAKCP KAKFFFACPGCAFFFKAK

Consensus sequence as a
baseline

uM).

non-haemolytic, AMP (28.8

Random  walk, cross- non-haemolytic, non-AMP.
filtering against haemolysis
Rationally designed strongly haemolytic, N/A.

cationic

self-assembling

peptide from an old project

N a Zzero-success rate in vitro. . ..

Pulling everything out of the peptide freezer
and characterising the minimum inhibitory
concentration (MIC, lower is better)
comparing with predictions from published
methods. | wanted to do an experimental
MSc. but realised this made little sense as
the success rate was zero for me.

Table 6.1: Comparison of state-of-the-art methods for the recognition of AMPs. Acronyms: support vector machine (SVM), artificial
neural network (ANN), discriminate analysis (DA), random forest (RF), fuzzy K-nearest neighbor (FKNN), convolutional neural network
(CNN), long short-term memory (LSTM). Values obtained from [76] Table 2 which were based on the Veltri et al. benchmark [74]. The

largest value of each column is marked in bold.

State-of-the-art Descriptor Sn(%) Sp(%) ACC(%) MCC  AUC(%)
AntiBP2 (SVM) Amino acid composition 8791  90.80 8937 0.7876 89.36
CAMPr3-ANN Unclear: "sixty-four best peptide descriptors” 83.00  85.11 84.05 0.6813 84.05
CAMPr3-DA Unclear: "sixty-four best peptide descriptors" 87.07  80.75 8391  0.6797 89.97
CAMPr3-RF Unclear: "sixty-four best peptide descriptors" 92.69 8244  87.57  0.7553 93.63
CAMPr3-SVM Unclear: "sixty-four best peptide descriptors” 88.62  80.47  84.55  0.6933 90.62
iAMP-2L (FKNN) Pseudo amino acid composition & 83.99  85.86 8490  0.6983 84.90
physiocochemical
iAMPpred (SVM) Pseudo amino acid composition & 89.33  87.22  88.27 0.7656 94.44
physiocochemical structural propensity
gkmSVM Gapped k-mer amino acid composition 88.34  90.59  89.46  0.7895 94.98
AMPScanner (CNN + LSTM) Amino acid encoding  89.88 92.69  91.29 0.8261 96.30
ACEP (Three-track CNN + LSTM + Attention) Amino acid composition, amino acid one-hot  92.41 93.67 93.04 0.8610 97.78
encoding, position-specific scoring matrices
(PSSM)
Tests (internal)
SVM (linear kernel) Amino acid composition 87.57  88.14 87.85  0.7571 94.95
1-gap dipeptide composition 8277 9096  86.86  0.7398 94.32
3-gap dipeptide composition 83.90 93.22  88.56  0.7746 95.06
4-gap dipeptide composition 8277  93.50 8814  0.7671 95.06
Tripeptide composition 17.80 100 5890  0.3125 91.95
Physiocochemical 87.29 8814 8771  0.7543 58.90
MLP (ReLU, 4 hidden layers, Adam) ( Amino acid composition 92.66 ) 85.88  89.27  0.7871 95.80
1-gap dipeptide composition 84.46  90.68  87.57  0.7529 93.69
3-gap dipeptide composition 88.98  83.62  86.30  0.7270 94.32
4-gap dipeptide composition 91.24 8616 8870  0.7750 93.95
Tripeptide composition 83.05 83.33 8319  0.6638 88.03
Physiocochemical 87.29 8842 8785 0.7571 95.18
Huggingface (RF) Concatenated compositional features (AAC, 8898  90.40 89.69  0.7939 89.69

4-gap DPC, PCP)

Table 5.4: Helix capping motifs in common a-helical AMPs. These have an NMR-resolved structure, which allows for an analysis of

intra-chain motifs.

Melittin LL-37 Brevinin-1BYa
Sequence GIGAVLKVLITGLPALISWIKRKRQQ LLGDFFRKSKEKIGKEFKRIVQR FLPILASLAAKFGPKLFCLVTKKC
N-terminal Motif G (high propensity) Hydrophobic staple P (high propensity)
C-terminal Motif KRQ (high propensity) QR (high propensity) KK (high propensity)
Stabilising pair-wise I2L6, V5L9, W19R22 E11K15,K12E16,E16R19 F1L5,I4L8, F12L16
Notes P14 causes kink  L2F5F6 form hydrophobic patch S-S bond at C-terminus
PDB ID 6DST 2LMF 6G4l1

Helix capping motifs

LL-37

PDB ID: 2LMF
N-terminal (left)
C-terminal (right)

KD ion-pair -

Hydrophobic staple

%

Building on available surface method MaSIF [3] "
for deep learning on surface representations,
but extend upon it to avoid random sampling of

surface.

QR (high propensity)

b) Attempt: Trying to understand the
impact of descriptor on prediction
accuracy?

) SOTA methods have flatlined
and it is often unclear how
sequence is encoded. Badly
reported methods.

i)  Why does composition alone
fare so well?

i)  Why did none of the predicted
peptides work if test metrics are
so high?

a) What explains why AMPs are not
permutation invariant, unlike
physicochemical descriptors
commonly used.

)  Simply: biophysics. A
permutation in order changes
structure. (the obvious)

i)  More subtly, permutations
disrupt helix capping motifs
that thermodynamically favour
adsorption to the membrane.

i) Permutations in order change
the facial amphiphilicity

a) Homeomorphisms to enable global surface representations
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b) & 2 representation has a brilliant symmetry for antimicrobial

with geometric deep learning.

Hydrophobicity Gauss Curvature

0931127

by the segregation of polar and apolar
residues.

a) Observation: All published methods seem 10 Finding purposely shuffled sequences in literature [2]

fail at shuffled peptiaes.
Inactive, shuffled

Method D i ACC(%
= S _ Deserptor A GYSVAGAKKVKVLFVFPFLF
MLP (ReLU, 4 hidden layers, Adam) Amino acid composition 53.12
Huggingface (RF) Concatenated compositional 50.
features (AAC, 4-gap DPC, PCP) Active
AMPScanner V2.0 (CNN + LSTM) Amino acid encoding 46.87
FLGVVFKLASKVFPAVFGKV
b) Symmetries of physicochemical representations and their
Implications.
Most All 10'° unique permutations in sequence result
physicochemical In the same physiocochemical representation. pl Mw

features are global
sequence averages
and thus many
seguences encode
the same feature.

i) Proposition: a ML/ GGF
DL framework

based on these SI"SFVPVRGPLGKV I FVKAY

cannot possibly
learn to discriminate R I S FPVAVV'SPFVKIVGLKG 1117 2113.62

permutations.

LAITVKVSVGIGSPPVFKRVEF 11.17 2113.62
R VA K*s*c 11.17 2113.62
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c) Why do methods lack robustness? Group theoretic answers.

)  Most features are surjective, Black Box
. Feature Generator
thus degeneracy arises.

i)  Amino acid composition is an D seq-.-b R4
orthogonal basis set, from

. : : @
which most physiocochemical | |
) . Amino acid  Linear Physicochemical scalar
descriptors can be derived. composiion . Welghts (surjective) W -a = p, € R o o
i) An MLP can provably learn all Injective  — Surjective o B”eCt'Ved o

these descriptors one-per- FPhVSi°°‘3’hemi°aL Amino acid composition treats the (One-to-one) (Onto) (One-to-one an nto)
! eatures Uncovere sequence as an unordered set, thus

neuron. inheriting the permutation group X,

{A,O,I} - {QaAa.}

ProtGPT2 GPT2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

a) Protein language models break
permutation invarance.

/\

) Positional encoding!

i) Attention looks
dramatically different for a
shuffled-inactive vs. active
AMPs.

iii) Perplexity indicates the

difference also: 97.9 <

13615

As is done routinely for all

other protein related tasks

now, language model
embeddings are powerful

Active

The raccoon plays piano and eats food.

~ [} (9] £ w N - o

Inactive, shuffled

GVSVAGAKKVKVLFVFPFLF onaot .sppfc oeyhodlanira se noTa cda

a) 'he beginnings of QSAR, but lacking validation due to
failled chemical synthesis of peptide.

1) Method can predict activity ~
reasonably 5uM < MIC <10uM 17 14 22 1 d >4

MSec. Thesis Timeline O~

eptides. . . . s 3
Pep Method developed can accurately learn global surface motifs to classify 2) Experimental validation of ¢
antimicrobial peptides, thus integrating structure. (Using a spherical CNN [4]) new global-surface method U : : F
Antipodal points commute ACC F1 MCC  AUC-ROC hindered by chemical .
with the group action of SO(3) (-MLP) 0.8305 0.8545 0.7097 0.9232 synthesis. bt chowing miramolecular hydro-
T (+MLP) 0.8573 0.8573 07153 (09419 ) 3) But, MD simulations indicate oS S S Kekulé form o the molesulorstracture
.. G & 2 € is visualised below.
strong membrane affinity. o8
Feature SO(3)/SO(3)
All features 0.835 + 0.002
Chemical 0.853 + 0.007
Geometric 0.656 + 0.013
Charge 0.832 + 0.009
Hydrophobicity 0.736 + 0.014
H-bonding 0.761 + 0.011
Gauss Curvature 0.650 = 0.010 i
Mean Curvature 0.651 + 0.019 a) Conclusion.
Receptive field The need for introspection for Robust Al in Biology:
)  Which symmetries are your methods blind to?
Extra. Hagmo{yS/s is a critical problem of AMPs, we found : : My q,{’:n: H (\NFKLASKVFRAVFGK/ ||) How COl..I|d you test this? (adversarial)
that the lyticity index sets a lower bound for the EC50 e iii) Is the blind spot, due to symmetry, acceptable for the use case?

r.»

Extra: Counter example which the method
cannot reliably predict due to genus of surface.

Extra: Symmetric group of the set is LARGE and
thus only one embedding for all is problematic.

GVSVAGAKKVKVLFVFPFLF >256ug/mL

Cyclic: RHQPOQRKOQKKPQOQRQK
Genus. 1

Lyticity Index

10?4

® DBAASP data

10°¢

FLGVVFKLASKVFPAVFGEKYV

8 ug/mL

MIC = 8 ug/mit

Results here:

1) Sequence (linguistic) and structure (geometric) form
well-complimented representations.

2) Syntactically 'correct’ AMP sequences grow sub-

exponentially in sequence space rather than as 20".

3) Global surface motif recognition with geometric
deep learning and antipodal symmetries.
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