
Classifier-free guidance facilitates the generation of a 

specific type (e.g. class) with a single network by training 

a conditioned and an unconditioned DDPM in 

conjunction. 

DDPMs are a type of generative network that work by iteratively refining a an initial sample of 

standard Gaussian noise, progressively reducing noise levels. This corresponds to reversing a 

forward noise diffusion process. Importantly, the reverse transition probablities can be trained  

by teaching a network that is conditioned on the timestep to separate the signal and noise 

components.
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Leveraging Denoising Diffusion Probabilistic Models 

for Segmentation in Volume Electron Microscopy 


Larissa Heinrich, Stephan Saalfeld

Denoising Diffusion Probabilistic Models (DDPMs) have proven to be powerful generative models for image generation while being simple to train compared to other alternatives such as GANs. We are exploring the application of DDPMs in bioimage segmentation. In particular, we perform our 

investigation on the example of segmentation of subcellular structures in volume electron microscopy.

Obtaining specialized training data remains a significant and time-consuming barrier in finetuning networks to new datasets and improving segmentation performance for underrepresented classes. Our work investigates the potential of using DDPMs to supplement training data for 

segmentation - ranging from additional data augmentation to generating examples with classifier-free guidance under various conditioning signals. Our approach is designed to leverage the abundant unlabeled data during the training process, thereby facilitating domain adaptation and class 

balancing.

While still in its early stages, our research aims to assess the utility of integrating generative models, specifically DDPMs, in segmentation of subcellular structures in volume electron microscopy. This exploration offers a promising avenue for reducing the human annotation effort in bioimage 

segmentation.
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Generating Organelle Label Data with Diffusion Networks

Generating EM + Label Pairs with Diffusion Networks
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Generating Volume EM Data with Diffusion Networks
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Challenges in Segmentation of Volume Electron Microscopy

Annotating ground truth in volume EM data is challenging and time-

consuming while the data sets are large and diverse.  It is therefore 

impractical to accurately capture the data's variability with ground 

truth annotation. 

Approaches that can leverage the vast amount of unannotated data 

have the potential to significantly reduce the necessary amount of 

training data. 
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So far, organelle segmentation 

networks do not work out of 

the box for data from a 

somewhat different domain. 

Many datasets require some 

additional groundtruth to 

facilitate finetuning. While, 

anecdotally, it can be hard to 

predict whether and how 

much additional data needs to 

be annotated for satisfactory 

performance, the variability 

between datasets is evident 

by visual comparison.

So far, we have addressed 

this problem by aiming to 

collect a large and diverse set 

of ground truth. This strategy 

could be supplemented by 

domain adaptation methods 

that can learn something 

about the peculiarities of new 

datasets without ground truth. 

By decreasing the annotation 

burden for each individual 

dataset we could increase the 

diversity of datasets with 

some ground truth.
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There are a multitude of discernable subcellular structures whose 

segmentation in volume EM data would be beneficial for biological 

research. However, these structures occur at vastly different rates, 

leading to highly unbalanced training data when annotated jointly. The 

imbalance of such training data affects performance for the less 

common classes in panoptic segmentation. 
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The subcellular structures of interest can have very different 

scales. Further, even for small structures it is often pertinent 

to know the larger-scale context to unambiguously identify 

them. Networks that operate across these scales and provide 

a large receptive field are needed to address this challenge.

Can you guess which patch was cropped from the nucleus 

and which one from the cytosol? 
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A more promising approach to generating training data for a segmentation network than simply generating EM/label pairs as above is to 

generate EM data conditioned on label data. This idea has several potential advantages: Since in classifier-free guidance the same network is 

used to train the conditioned and unconditioned classifier, training examples for the unconditioned case can be sampled from the unlabeled 

parts of the dataset. This can be combined with other guidance signals, such as the dataset id or various sample attributes and imaging 

conditions, which could be helpful for domain adaptation.

To generate training samples this method still requires independent generation of label data. This 

could be done with a modeling approach or learned with a generative network, as above. A network 

could also be equipped with a guidance signal for targeted generation of specific organelle types to 

alleviate the imbalance problem. Further, many simple constraints (e.g. lumen needs to be enclosed 

by membrane and patch border) can easily be computed on label images to screen their quality 

before using them for segmentation training. Another potential source for the label data are the 

annotations from other datasets, which could be transferred to the other datasets via the second 

guidance signal.
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Classifier-free guidance can be used for 

segmentation by using the EM data as the guidance 

signal. An interesting feature of this approach is that 

it would allow us to sample different hypotheses for 

the segmentation. However, the training data is still 

limited by the available groundtruth.

We compare the results of a segmentation network trained on pairs generated by a diffusion network 

to an equivalent network trained with the same data as was used for training the DDPM. Note that the 

lack of 3D context and small patch size makes this a very challenging segmentation problem.

As a first test for the utility of diffusion networks for the generation of training 

examples, we use pairs of patches generated by a diffusion network such as 

this one to train a 2D segmentation network with the same architecture as 

the DPPM's.  

The good quality of the segmentations trained from diffused training data suggests that the diffusion 

networks serve as a useful form of data augmentation. The diffusion network and the segmentation 

network from real data only use a very minimal set of augmentations. While these initial experiments 

are promising, a quantification and further exploration are needed to draw robust conclusions.
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Training a 2D Segmentation Network with Generated EM + Label Pairs


