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recover cell specific signatures between different species1
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The ability to integrate multiple
layers of omics data plays an
essential role in understanding the
complex interplay of different
molecular mechanisms that give
rise to cellular diversity.

To address this challenge we
implemented Integrative Iterative
Non-negative Matrix Factorization
(i2NMF), a computational method to
dissect genomic signatures from
multi-omics data sets.

i2NMF was implemented as an
extension of the R package Brat-
wurst available in Github.

We applied i2NMF to :

https://github.com/wurst- theke/bratwurst

identify rare cell populations

Fo
r ev

ery initial matrix X
n

Variable number of signatures
for every data set

Signatures are shared
across data sets

Stage 1 Stage 2
i2NMF workflow:

The shared effect is recovered in the Hs
matrix, and the exposure of the features
explaining this effect are contained in the
Ws matrices (Yang and Michailidis, 2016).

The explained variance of the
decomposed model can be
estimated for both stages by:

This is useful to compare the
performance between stages and the

overall decomposition

Common features
should be shared
across columns,
e.g. gene or
sample IDs.

i2NMF advantages

● The feature exposure matrices
Ws and Wr are different,

recovering unique signatures
between stage 1 and 2

● The number of inferred
signatures in stage 2 can vary
across matrices, allowing a better
resolution of specific effects.

● All solvers were implemented
on TensorFlow, allowing

scalability between platforms.
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1. Starting from two or more non-
negative matrices, i2NMF initially

decomposes the shared effect across them,
using integrative NMF (iNMF).
Solving the following problem:
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Residual input matrix
Xr is defined by:

and decomposed into:

2. On a second iteration, i2NMF
decomposes the residual effect, which was
not explained by the shared decomposition
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c. Cell type and gene set enrichment analysis
revealed that each shared signature

corresponds to cell types.

Human & Mouse
substantia nigra (SN)
scRNA-seq data

a. The human and
mouse SN data sets
were integrated over
the set of shared
genes using i2NMF.

b. The shared Signatures identified in the first
integrative step, were able to combine human
and mouse cells (left) and resolve groups of the

most relevant cell types in the SN.

d. The second stage of i2NMF
recovered species-specific
Signatures, that helped to resolve
cellular sub-types (top) and were
defined by marker genes (bottom).
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b. The shared H matrix was able to recover
two cell specific signatures. On the second
iteration for the ATAC-seq data, a defined
signature was decomposed for two cells.

Human embryos
Morula and blastocyst

scCAT-seq data

a. The human embryo scCAT-
seq data set was integrated
over all 72 cells. For the gene
expression data, the majority of
the explained variance was
captured in the first stage of
i2NMF, interestingly for the
chromatin accessibility the
second stage also recovered a
a considerable fraction of the
variance.

c. The decomposed
shared signatures
where stable across a
range of factorization
ranks, showing a clear
separation between
morula and blastocyst
cells.

d. The set of chromatin accessible regions
associated with the ATAC-seq Sign. 3 and its
targets genes showed a specific pattern for
two blastocyst cells. These also showed higher
expression in marker genes for cells of the
inner cell mass (ICM). Thus, allowing the
identification of this rare cell type.
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