Engineered HaloTag variants for fluorescence lifetime multiplexing
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Introduction

The self-labeling protein tag HaloTag7
(HT7) shows a fluorogenic response with
rhodamine based fluorophores due to their
open-close equilibrium.

+ Labeling
cl _ > +C

HaloTag7 SiR-CA

The position of the equilibrium s
determined by the local environment and
therefore the protein surface.
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Can we engineer the protein
surface to influence the
fluorophore’s properties?
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Results

Structure guided protein engineering lead
to the identification of both brighter* and
dimmer# HaloTag variants.

. HaloTag9* (HT9): HT7-Q165H-P174R
« HaloTag10*# (HT10): HT7-Q165W
- HaloTag11* (HT11): HT7-M175W
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Characterization of HT9, HT10 and HT11

The brightness of the new HaloTags was characterized with a panel
of 46 different fluorophores in comparison to HT7.

* HT9 rendered primarily fluorogenic fluorophores brighter.

« HT10 and HT11 decreased the brightness of most rhodamine

derivatives.
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The fluorescence lifetime of several
fluorophores bound to HT7, HT9,
HT10, or HT11 were spanning a
range of up to 3 ns. In the case of
MaP555 and MaP618!'l they were
gradually distributed, making these
fluorophores ideally suited for
fluorescence lifetime multiplexing.

Comparison of photophysical
parameters such as quantum
yield, extinction coefficient,
or fluorescence lifetime in
combination  with  X-ray
crystal structure analysis,
allowed us to get a better
picture of the molecular
mechanisms inducing the
increases and decreases in
fluorophore brightness.

Intensity weighted
fluorescence lifetime (ns)
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[11 Wang, L. et al. Nat. Chem. (2020).

Fluorescence lifetime multiplexing
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Fluorophores cannot only be separated based on their spectral
information but also using fluorescence lifetime information acquired
via fluorescence lifetime imaging microscopy (FLIM). Separation can
be achieved using Pattern Matching!? of decay curves or in phasor
spaceldl. Using HT7, HT9, HT10, and HT11 we were able to separate
up to three components in one spectral channel.
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Living U-2 OS cells expressing Tomm20-HT9, H2B-HT7 (left), and B4Gal-T1-HT11 (right) labeled
with MaP618-CA. Scale bars, 10 ym.

[2] Niehorster, T. et al. Nat. Methods (2016).  [3] Digman, M. A., et al. Biophys. J. (2008).




Six component imaging

Through the combination of
two distinct spectral channels
(MaP555 and MaP618) it
became possible to image six
components at the same time.
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Living U-2 OS cells expressing B4Gal-T1-HT7, Tomm20-HT9, LAMP1-HT11, and Lyn11-SNAP-tag

Long lifetimes o
Short lifetimes

Lyn11-SNAP

were labeled with MaP618-CA, MaP555-BG, MaP555-DNA, and MaP555-Actin. Scale bars, 10 um.

Fluorescence lifetime-based Fucci biosensors

Through the adaption of Fucci biosensors Mixed lfetime
used to indicate the cell cycle stagel4, we o

created a fluorescence lifetime-based Fucci & £ M
sensor. It only occupied one (variable) %%
spectral channel instead of the green and red T2
channel and can therefore be multiplexed G1
more easily.
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Fluorescence lifetime-based Fucci biosensors
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FastFLIM image of U-2 OS cells expressing L T-Fucci(CA) labeled with MaP618-CA.
Scale bars, 50 ym and 25 ym.

Conclusion

Modulation of the HaloTag surface can indeed influence the
photophysical properties of bound rhodamine based fluorophores.
Our screening based approach has not only led to the identification of
the brighter HaloTag9 but to a series of HaloTag variants that can be
combined for fluorescence lifetime multiplexing.

Frei, M. S. et al. bioRxiv (2021).
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