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Why multi-omics in cancer study? High-dimensional data are now a standard in biology, particularly in cancer biology, where national and international consortia have 
profiled thousands of patients for multiple molecular assays (“multi-omics”). Moreover, multi-omics single-cell data are emerging, opening to the need of approaches able to deal with their volume 
superior to the one of bulk data. 

Why Dimensionality Reduction in multi-omics integration? Multi-omics DR approaches jointly decompose omic datasets into low-dimensional spaces 
while preserving most of their original information content. Different DR approaches are based on different mathematical assumptions, which makes difficult to chose which method to prioritize 
depending on the particular problem under analysis. We here benchmark the nine most representative unsupervised multi-omics DR approaches [1-9]. 
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Jaccard-index between the clusters imposed in the
simulated data and those retrieved by the different
methods. Each plot refers to a different number of clusters:
5, 10, 15. For each method (e.g. RGCCA) both its
performances on heterogeneous and equally-sized clusters
are reported (denoted as RGCCA and RGCCA_ES,
respectively).

For each method the p.values resulting from the survival
analysis applied to its factors are reported.

Scatterplots of Factor 1 and 2 are reported for each methodology. The colors denote the cancer 
cell line of origin: pink for K562, orange for Hela and blue for HCT. For each method, the C-index, 
evaluating the quality of the obtained clusters, is also reported.

Do you want to compare your 
method with those here tested? 

Do you want to compare the 
existing methods on your data?

Use our Jupyter notebook 
https://github.com/ComputationalSystemsBiology/momix-
notebook
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For each method, the number of factors enriched in at least
a biological annotation is compared with their selectivity.
The across-cancer average behavior is here summarized.

For each method, the number of their associated clinical
annotations is compared with their selectivity. The across-
cancer average behavior is here summarized.
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