Abreu, Barbara Structural interpretation of high throughput CRISPR experimental data	43
Akbas Buz, Zeynep Erge Unveiling intrinsic dynamics of protein-protein binding events	44
Amrita, Amrita Characterizing the subunit interfaces and robustness of the ferritin family of proteins	45
Angioletti, Daniele HEqBM: A transferable and general-purpose protocol for backmapping any coarse-grained simulation using equivariant neural networks	46
Anindya, Atsarina Larasati Prediction of peptide binding to survivin based on experimental microarray fluorescence intensities	47
Arghittu, Serena Maria Regulation of human c-Met receptor via Glycointeractions: a Replica MD simulation study	48
Awasthi, Deepanshi Understanding isoform diversity in zebrafish paralogs by tracing of exons	49
Bacic Toplek, Fran Multi-eGO: an ensemble-based model for the simulation of self-assembly processes	50
Baczynska, Maria Structural studies into biofilm formation by the Legionella pneumophila collagen-like protein	51
Badonyi, Mihaly Proteome-scale prediction of molecular mechanisms underlying dominant genetic diseases	52

Ballabio, Federico An accurate and efficient hybrid Small Angle Scattering implementation including solvent effects	53
Barlas, Ayse Berçin Human de novo DNA-methyltransferase selectivity is regulated by a base-specific hydrogen bonding network	54
Barone, Federico Unsupervised sequence and structure-based protein family classification with density peak clustering	55
Bartas, Martin The burgeoning universe of proteins generating and binding left-handed double helical forms of nucleic acids	56
Bartoloni, Tommaso Towards peptide-based therapeutics against cardiac disease – prediction and simulation of the interaction of the S100A1ct peptide with a membrane environment	57
Beaudoin, Christopher Modelling supramolecular clusters of voltage-gated sodium channels in the cardiomyocyte perinexal space	58
Becker, Daniel Prediction of thermal weak spots in ApPDC by Constraint Network Analysis to enable more efficient enzyme optimization	59
Berger, Sebastian In silico probing of cysteine residues for covalent drug design	60
Bøgholm, Niels Integrative modelling reveals the architecture of the 16 subunit IFT-B complex	61
Brandner, Astrid Paving the way for modelling coarse-grained carbohydrates with a systematic approach	62

Bruno da Silva, Fernando Structural characterization and degradation of a double knotted Protein CnTrmD-Tm1570 from Calditerrivibrio nitroreducens	63
Bryant, Patrick Structure prediction of protein-ligand complexes from sequence information with Umol	64
Butt, Ben Structural automation facilitates artificial intelligence-led structure-based drug design	65
Capelli, Riccardo Computational modeling of OR51E2 via de novo structure prediction and molecular dynamics simulation	66
Carli, Alberto Integrative protein-protein interaction screening to unravel the molecular mechanisms of Pif1 helicases in DNA replication	67
Çavdar, Gözdem Computational insights into the transcriptional regulation underlying cellular differentiation and metastasis	68
Chandran, Nithin CABS-dock: Docking peptides derived from interaction interfaces to predict protein-protein complex structures	69
Chaurasiya, Dhruv Kumar The thermodynamic architecture of eukaryotic protein kinases	70
Ciemny, Maciej Extension of the CABS-dock method for protein-peptide docking for membrane protein modelling	71
Cueno, Marni Structural comparison of differing spike protein structures relative to conformation changes observed among the various SARS-CoV-2 variants	72
de Vries, Ida AlphaFill: enriching AlphaFold models with ligands and cofactors	73

EMBO Workshop: Computational structural biology	
Díaz Holguín, Alejandro Virtual screening using AlphaFold-predicted structures of G protein-coupled receptors	74
Dilip, Rohit Generative design of large serine recombinases	75
Docter, Steffen Amine transaminase engineering based on constraint network analysis	76
Döseme, Hatice Dynamic recognition of the nucleosome core particle by chromatin factors	77
Duman, Özge Signature dynamics of activation transition pathways in GPCRs	78
Elbeyli, Efe Characterizing the effect of point mutations affecting oligomerization at different levels on ASC interaction surface dynamics	79
Ford, Zephyr Unravelling the Nitrosopumilus maritimus ribosome	80
Fredegaard Hansen, Jacob Advancing health data science in Denmark by collaborative implementation of training resources	81
Freiberger, Maria I. Presenter: Parra, R. Gonzalo The evolution of local energetic frustration in protein families and superfamilies	82
Fröhlich, Fabian Drug-Sensitivity prediction using structure-based models of signal transduction: a thermodynamic approach	83
Fukuhara, Erika Unveiling transient complexes: kinetics and structure of the malate dehydrogenase-citrate synthase complex	84

Gagne, Stephane Introducing biochemistry and bioinformatic students to machine learning using the training of protein secondary structure prediction deep neural networks	85
Genz, Luca PICKLUSTER: A protein-interface clustering and analysis plug-in for UCSF ChimeraX	86
Gerasimavicius, Lukas Improving gain-of-function and dominant-negative variant identification using protein structures	87
Cancelled	88
Gisdon, Florian Graph-Theoretical prediction of biological modules in protein structures on different levels of abstraction	89
Glaser, Manuel Towards peptide-based therapeutics against cardiac disease – prediction of a mechanism of action for the S100A1ct peptide by docking	90
Gut, Jannik Adrian Aggregating and optimising structure predictions with AlphaFold2	91
Gutfreund, Cedric Structural and functional analysis of DNA polymerases in the interplay of artificial substrates	92
Hadarovich, Anna Structural changes induced by alternative splicing	93
Haddad, Bassam Characterizing the human SLC26 family of multi-functional anion transporters	94

Hanke, Anton Ariel Apoptotic regulation by tbid involves transient interactions with bcl-xl and the lipid membrane	95
Hanke, Christian Integrative modeling and database deposition of FRET-assisted structural models	96
Hénôt, Faustine Presenter: Loison, Claire Structure and dynamics of a transiently populated state of human HSP90 N-terminal domain	97
Hetmann, Michael DrugSolver CavitomiX, a cavity-based computational pipeline for drug repurposing and identifying ligands and inhibitors of target enzymes	98
Hori, Naoto Ion-driven kinetics of RNA folding and misfolding caused by energetic and topological frustration	99
Jalalypour, Farzane An allosteric cholesterol site in glycine receptors defined through molecular simulations	100
Jänes, Jürgen Expansion of the landscape of small-molecule binding sites by AlphaFold2	101
Jebamani, Petrina In silico structural study on the binding of IgG Fc and FcγRIII	102
Jedrzejewski, Mateusz Presenter: Sadlej, Marta Nucleolar Essential Protein 1 (Nep1): elucidation of enzymatic catalysis mechanism by molecular dynamics simulation and quantum mechanics study	103
Joshi, Chaitanya gRNAde: a geometric deep learning pipeline for 3D RNA inverse design	104

Jung, Jaewoon Development of GENESIS CGDYN for large-scale coarse-grained MD simulation	105
Jurecka, Petr Using empirical force fields to model DNA adaptation in protein-DNA interactions	106
Justyna, Marek In silico prediction of small RNAs with denoising diffusion models	107
Kahveci, Kubra Discovery of novel allatostatin type-c receptor agonists	108
Kaushik, Shri Kant Role of RNA conformational transition in protein-RNA recognition upon RNA binding	109
Kempf, Georg GUIFold - A graphical user interface for local AlphaFold2	110
Khatri, Shantanu Al-based AlphaFold2 significantly expands the structural space of the autophagy pathway	111
Ki, Heesoo Artificial zinc finger protein design via deep learning	112
Kim, Yeajin Designing novel DNA binders based on natural protein-DNA interaction patterns	113
Klein de Sousa, Victor RBPSeg: towards the tail fiber structurome	114
Kosaca, Mehdi PROT-ON: A structure-based detection of designer PROTein interface MutatiONs	115

Kotey, Hassan In silico drug design to inhibit a specific enzyme (SARS-Cov2 protease) using clinically relevant drug molecular mechanisms	116
Kotzampasi, Danai Maria Insights into the mechanism of the C-terminal PIK3CA activating mutations	117
Kumar, Ashutosh Improved coarse-grained force fields for intrinsically disordered proteins	118
Kutlu, Yigit Global motions reveal functional sensitive mutational sites with allosteric response	119
Lammel, Daniel Rhizophagus irregularis HSP60 protein modeling for soil quality	120
Lazaridi, Symela Atomistic models and signaling mechanism of PhoQ	121
Le Nguyen, Ngoc Lan Testing charge-scaling protocols for more realistic description of salt bridges in molecular dynamics simulations of insulin monomer	122
Cancelled	123
Lee, Chop Yan Presenter: Strom, Joelle Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation	124
Maggi, Stefano Al revolution: filling the gap between cryoET low resolution maps and pseudo-atomic model of bacteria machines	125
Mandal, Nishita Unravelling the biological relevant tunnels in dehalogenases using molecular dynamics simulations	126

Marchetto, Alessandro In silicio approach to predict membrane proteins oligomers: the case of the human D2 neuroreceptor	127
Marchlewski, Igor Computational insights into effects of spacer polypeptide for quorum quenching activity of MacQ acylase.	128
McCafferty, Caitlyn Presenter: Marcotte, Edward An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes	129
Mello, Victor Hugo From structural variability to mechanical energetics of a molecular motor assembly	130
Miglionico, Pasquale Delving into signal transduction mechanisms with AlphaFold-Multimer	131
Milewski, Lukasz Merging fast coarse-grained protein simulations and all-atom molecular dynamics	132
Mohseni Behbahani, Yasser Deep Local Analysis deconstructs protein-protein interfaces and accurately estimates binding affinity changes upon mutation	133
Molodenskiy, Dmitry TrueMultimer: advances in integrative structural modeling using AlphaFold Multimer	134
Mukherjee, Sunandan Modeling 3D structure of RNA using low resolution cryo-EM maps with SimRNA-Cry	135
Myung, Sojung Improving protein-nucleic acid complex structure prediction using protein-DNA interaction data	136

EMBO Workshop: Computational structural biology	
Narrowe Danielsson, Sarah Benchmarking machine learning methods for protein-protein interaction prediction	137
Niitsu, Ai Characterizing structural dynamics of de novo designed transmembrane peptide barrels	138
Ozden Yucel, Burcu The impact of Al-based modeling on the accuracy of protein assembly prediction: Insights from CASP15	139
Paiardi, Giulia Design of novel anticancer peptides and peptidomimetics by combining AI, molecular simulation and wet lab experiments	140
Paladino, Antonella Insights into the dynamical plasticity of human Argonaute-2 upon RNA-loading	141
Panel, Nicolas Presenter: Kahlous, Nour Aldin Design of drug efficacy guided by free energy simulations of G protein-coupled receptors	142
Penic, Rafael Josip Discovering RNA structural insights with self-supervised language models	143
Perlinska, Agata Presenter: Sulkowska, Joanna Are there double knots in proteins? Prediction and in vitro verification based on TrmD-Tm1570 fusion from C. nitroreducens	144
Perta, Nunzio Enhancing graphene field-effect transistor biosensors with DNA-mediated protein orientation	145
Pilla, Smita Priyadrashini Computational design and evaluation of peptide inhibitors for the uL5-MDM2 interaction in cancer signaling	146

Prabhu, Janak Bayesian framework to optimize solvents for biomolecular coarse-grained molecular dynamics	147
R, Aravind Plasticity of the proteasome-targeting signal Fat10 enhances substrate degradation	148
Rinaldi, Francesco Integration of computational and experimental biophysics reveals novel insights on the BRCA2 - RAD51 interaction	149
Rodriguez Siordia, Ivan Characterizing the function of PARP7's catalytic and regulatory domains in the regulation of innate immunity	150
Rosignoli, Serena From AlphaFold to PyMOL: enabling seamless access to structural bioinformatics tools	151
Ruta, Julia Structural interactomics and structure predictions reveal protein binding sites within disordered regions	152
S, Mukundan Introducing functional chemical neighborhoods into pre-existing protein structures	153
Sahin, Alp Tegin Characterization of ligand gating, ion conduction and the ion selectivity mechanism of the endo-lysosomal ion channel hTPC2	154
Sahrawat, Amit Singh Breaking the bottlenecks: navigating challenges in QM/MM modelling of enzymatic reactions	155
Savas, Büsra A C-term truncated EIF2By protein encoded by an intronically polyadenylated isoform introduces unfavorable EIF2By–EIF2y interactions	156

Serian, Miruna Investigation of the synergistic antimicrobial effect of Winter Flounder peptides using molecular dynamics simulations	157
Serrano Pubul, Luis Presenter: Hamdani, Rahma Predicting the effect of point mutations on protein stability using triangles of residues	158
Shor, Ben Predicting structures of large protein assemblies using combinatorial assembly algorithm and AlphaFold2	159
Siggel, Marc Towards multi-scale simulations of the Influenza A virus envelope	160
Sikora, Maciej AlphaKnot2.0: database and server to analyze entanglement in AlphaFold and ESMFold predicted proteins, case study of the new topology 6.3	161
Silvestri, Giuseppe Assessing the performance of non-equilibrium thermodynamic integration in Flavodoxin redox potential estimation	162
Spinetti, Elena Conformation of the HIV-1 envelope glycoprotein (Env) interacting with antibody probed via molecular dynamics simulations	163
Sramkova, Denisa Presenters: Sramkova, Denisa; Klimentová, Eva; Simecek, Petr Knot or Not? Sequence-based identification of knotted proteins with machine learning Srivastava, Mitul	164
Extensive computational biophysics drive in harnessing the pivotal determinants for the discovery of novel inhibitors against USP7	165
Stoev, Chavdar Unlocking the secrets of gasdermin-mediated cell death: Insights into membrane pore formation and beyond	166

Streit, Julian The ribosome lowers the entropic penalty of protein folding	167
Struwe, Michel Integrative structural biology of MOSC domain proteins	168
Sudhakar, Sruthi DNA modifications in the pseudoknot structure of guide RNA abrogate editing activity by Cas12a-CRISPR systems: Insights from MD simulations	169
Surpeta, Bartlomiej Engineering of penicillin G acylase dynamic cavity for degradation of bacterial signaling molecules	170
Talagayev, Valerij OpenMMDL: A workflow for molecular dynamic simulations of protein-ligand complexes setup, simulation and analysis	171
Tee, Wei-Ven From drug repurposing to designing allosteric effectors	172
Thulo, Monare Role of FOXP1 and FOXP2 FHD in COVID-19 infection	173
Tian, Lu Mechanistic insights into dark and dronc activation	174
Tubiana, Thibault Molecular Modelling, homo-oligomerisation and membrane interactions of Hepatitis E virus PORF1 replication polyprotein	175
Tueting, Christian Enabling cryo-EM density interpretation from yeast native cell extracts by proteomics data and AlphaFold structures	176
Turunç, Serhan Activation and suppression of immune response by cGAS: Computational insights	177

van der Weg, Karel TopEnzyme, a large structural database for enzymes, significantly improves classification of protein function	178	
van Heesch, Thor Deciphering sequence specific DNA binding by H-NS using molecular simulations	179	
Vanni, Stefano Discovering new membrane protein functions with multi-scale molecular simulations.	180	
Venezia, Rita Presenter: Ghitti, Michela Structural characterization and molecular modelling of BoxA - Cxcr4 complex	181	
Venkatesh, Anjan Studying paralog compensation and collateral loss with structural PPI modelling	182	
Verma, Paras Presenter: Pandit, Shashi An innovative method to uniquely annotate exon with attributes to understand isoform variations	183	
Wirnsberger, Gregor Flattening the curve - How to get better results with small deep-mutational-scanning datasets		
Yasar, Ekrem Activation mechanism of the AT2 receptor through Ang II binding		
Yilmazlar, Alize Structural deorphanization of GPR141		
Zan, Bing Structural ensemble of peptide-induced membrane poration by Magainin Peptides	187	
Zdrojewska, Karolina Unlocking the secrets of phage DNA polymerase: a structural analysis of the Efa DNA polymerase	188	

Zeida, Ari Role of Thiol Redox Status in SARS- recognition by the host receptor ACE	1 07 1	189
Zgarbova, Marie OL21 force field for canonical and no	on-canonical DNA structures	190
Zhong, Zhiwen Atomistic understanding of the formation complex	ation of the TREM2-DAP12	191
Zhou, Jiayao LilrB3 is a putative cell surface recep	Presenter: Wang, Yumeng htor of APOE4	192