faculty of science and engineering

Suzanne Jansen, Rudy Rubini, Clemens Mayer Stratingh Institute for Chemistry, Groningen, The Netherlands s.c.jansen@rug.nl http://www.mayerlab.nl

Phenotypic selections for the directed evolution of enzymes

Harnessing the power of evolution for enzyme engineering

made-to-order biocatalysts impressive catalysts, with Assaying enzymatic activity is Enzymes persistent are a population unmatched rates and selectivity that function bottleneck in the directed evolution of enzymes. in mild, environmentally friendly conditions^{1,2}. Laborious screening methods that analyze each variant one-by-one greatly impede throughput and However, poor stability or narrow substrate are in stark contrast to nature's selection of improved scope can limit their industrial applications. variants from a diverse population. To mimic nature's selection pressure Luckily, nature's catalysts are evolvable and survival of the fittest, we have established a link evolution can tailor enzymatic directed between enzyme performance and cellular fitness. A x x x x x x x properties to fit a user's need. To do so, one mimics the Darwinian algorithm in the diverse population is subjected to selection x x x x

universityof

Directed evolution:

gene

library

gene

groningen

laboratory by performing iterative cycles of diversification, selection, and amplification.

pressure. Cells featuring improved enzymes have x x x x x x = survival the best and will therefore survive. adapted

population

× × improved

Survival of the fittest

Linking enzyme activity to survival

Cells are addicted to a non-canonical amino acid (ncAA) through genetic code expansion^{3,4}. The enzyme of interest is able to convert an appropriate ncAA precursor to the ncAA, enabling growth in the presence of antibiotics.

Carbamoylases as model biocatalysts

Improved enzymes provide a growth advantage: the basis for selection

Cells featuring improved enzymes have higher fitness under selection pressure. They grow faster and under more stringent conditions. [carb] = 100 μg/mL

We reasoned that we could use this growth advantage to select for improved enzymes. When a diverse population is mixed and subjected to continuous selection pressure, cells featuring better variants will outcompete the rest, causing their extinction. Sequence

terephthalic acid /

PET oligomer

PET-degrading

enzymes

Ser-C

 O_2N

acyloxy-

methylether

3nY

H₃N

 CO_2

Outlook: toward diverse populations and plastic-degrading enzymes

To expand our continuous evolution platform, we will generate more diverse populations that simultanously assess millions of enzyme variants. We anticipate that many mechanistically-diverse biocatalysts can be engineered with our ncAA approach. Of particular interest is the directed evolution of polyethylene precursor terephthalate (PET) degrading enzymes for more efficient PET recycling strategies.

References

1. Schmid et al. 2001, Nature 409, 258; 2. Leemhuis et al. 2009, IUBMB Life 61, 222; 3. Rubini & Mayer 2020, ACS Chem. Biol. 15(12), 3093; 4. Young & Schultz 2018, ACS Chem. Biol. 13(4), 854.

= Tyr